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Foreword

There has always been increasing practical motivation for

study of light scattering in seawater, despite the fact that
this field sometimes seems to be merely speculative. Overall,

this phenomenon reflects a characteriatic of seawater which is
essential from the standpoint of sedlmentology or geochemistry,

or again, biology: the concentration of particulate matter in

suspension. Scattering Is actually a spatial redistribution of

energy w_ich does not proceed by chance, _ut rather in conformity
with a law which precisely describes the scattering Indlcatrlx."

Determination of this factor, in conjunction with its theoretical

interpretation, permits the possibility of obtaining information
on the particles and their properties which will complement that

obtained with somewhat greater difficulty by direct observation.

In addition, all problems of oceanographic optics, including

the propagation, or more generally, the radiative transfer of

radiation, and the destruction of contrasts, that is, of images
-- whether treated experimentally or theoretically -- all these

problems imply a knowledge of the index of diffusion. Some cases
involve the influence of properties such as backscattering or scat-

tering, on the other hand, in the vicinity of the direction of

propagation, which are difficult to evaluate by simple experi-

mentation; in these cases, theoretical analysis may be of equal

or even greater value.

The following text is divided into three principal parts.

The first deals solely with experimental findings, while the

second indicates how theory may be used and how it is expressed.

Finally, the third part deals conjointly with the experimental

and theoretical results and is directed toward their interpreta-

tion and application.

In order to simplify the text itself, definitions and

certain numerical aspects of the computations performed on a
computer are dealt with in two appeudices. Similarly,

to avoid overburde_ing the bibliography, references to original

works relating to those designated under the theories of Rayleigh,
Raylelzh-Gans and Mie have been omitted. All these references

are in effec_ replaced by a single entry: the now-
classical work by H.C. Van de Hulst (1957), which encompasses
them all.

Note: Each figure is given two numbers, the first being

_, II or III, depending on whether it appears in the first,

_econd or third part. Equations are numoered only in the
second part, agein with two figures, the first being l, 2 or 3,

depending on whether they appear in Chapter l, 2 or 3 of this

part.
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LIGHT SCATTERINGIN SEAWATER.
EXPERIMENTALRESULTSAND THEORETICALAPPROACH

Andr4 Morel
University of Paris, Physical Oceanography Laboratory,
Center of Oceanographic Research, Villefranche-sur-Mer

Int roduct ion /3.1-4"

The propagation of light radiation in any medium other than

a vacuum is accompanied by two phenomena which determine the
attenuation of the flux: absorption and scattering. The energy

absorbed is converted into heat, or may be partially re-emltted

by fluorescence or the Raman effect, but with a change in

wavelength. The scattered energy, on the other hand, is not

transformed, but is merely dispersed in space. If the medium

is "optically pure," scattering is provoked by the molecules

themselves and by them alone. In "disturbed" mediums,

scattering of particles in suspension is added to the molecular

scattering. Even in its purest state, seawater behaves as an

optically disturbed medium for visible radiation; as a result,
it will be necessary to examine the respective roles of molecular

scattering and particle scattering with reference to each
problem considered, whether it concerns the total scattering

coefficient or the volume scattering function, the shape of the

indicatrix, selectivity, or polarization.

All the useful definitions are given in Appendix I.

i. Scattering Indicatrix of Seawater

I.i. General Shape

During the same year (1963), N.G. Jerlov and S.Q. Duntley
independently made systematic reviews of the scattering indicatrix
measurements for seawater which had been performed so far.

The results compared by these investigators were obtained

with different devices, some operating in situ and others

necessitating sampling and decanting of the sample; some made

use of white light and others of filtered radiation (blue,

blue-green, green, yellow); moreover, the results concerned water

with extremely diverse characteristics as to turbidity and origin

(Pacific Ocean, Atlantic Ocean, English Channel, China Sea, and

even lakes). Reaching identical conclusions at the end of this

comparison, N.G. Jerlov and S.Q. Duntley noted the very significant
fact illustrated by Fig. I.l: all the measurements are in agree-

ment for angles less than 90 ° , thus showing that the shape

*Numbers in the margin indicate pagination in the foreign text.

Hereafter, only the final dlglt(s) -- i.e. after the dash -- will
be indicated.
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of the scattering indicatrix varies little from one type of seawater

to the next and is extremely asymmetrical in all cases. For

angles greater than 90 ° greater dispersion may be noted. In

another connection, the angle at which scattering is minimal

varies from approximately I00 ° to 130 ° depending on the case,
the minimum itself being more or less marked.

0 4

lO

0

30"

Fig. I.l. Scattering indicatrices obtained by various

investigators, normalized to 90 ° .

H: E.O. Hulburt (1945), Chesapeake Bay;

K: M. Kozlianinov (1957), China Sea;

S: T. Sasakl (196G), Japanese trench;

J: N.G. Jerlov (1961), Atlatic (Madeira);

[Caption continued on following page.]
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Fig. 1.1, continued:

T1/T2: .I.E. Tyler (1961), Pacific (San Diego);
D: S.Q. Duntley (1963), Lake Winnlpesakee;
O: Y.E. Otchakovskl (1965), Mediterranean

It should be noted that the measurements made by Pickard
and Giovando (1960) on water which may afford a special case

(fjord of British Columbia) diverge considerably from the overall

resUlts, the increase toward small angles being more marked.
The measurements made by Sasaki et al. (1960) also diverge from

the other findings to some degree since they reveal slight
undulations. Mankovsky et al. (1970) have also detected such

special characteristics. In a very general manner, however,

subsequent analyses have consistently confirmed the broad ten-

dencies arawn from an examination of these initial measure-

ments.

1.2. Possible Variations at Mean Angles (0 > 30 °)

In reality, a large number of tests performed on water

of much more varied type from the standpoint of clearness have
revealed that the shape of the indlcatrix for seawater may

vary considerably within the range of mean angles. Figure

1.2 gives an example (the curves are normalized to 90 ° , since

it is also necesss_v to show changes in shape without bringing the

magnitude of the indicatrix into play). Without giving a

large number of examples, Fig. 1.2 roughly summarizes the
variations in the indicatrix which may occur within this range

of angles. Curve 3 shows the most symmetrical shape
which could be observed, correspondinF to extremely pure deep

water (identical shapes have been obtained below i000
or 2000 meters both in the Eastern Mediterranean -- laboratory

team, 1969 -- and in the Madeira region); curve 2 is an inter-
mediate curve which is frequently observed with reference to
the "blue" surface water of oceans; and curve I is the pre-

dominant curve for a number of types of surface water and
coastal waters. The asymmetry is slightly more marked for

the waters of the Paltic Sea (Station 2, G. Kullenberg [1967),

2 -.0-76m-i)" Curve 5, based on measurements made. Fetzold (1972) falls between cases 2 and 3.

Systematic a_alysis of the shape of the ind_atr!x leads to

the following conclusion: between the two extreme cases shown,

t _ is, from the extremely asymmetrical shapes such as

th of curve I to the most symmetrical shaoe, that of curve 3,
the arious intermediate shapes for the indicatrix are not

randomly distributed. The tendency toward symmetry actually occurs

D
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Fig. 1.2. Indicatrices normalized to 90 ° .
i. English channel (surface, Roscoff, 6/29/63,

b > 0.6 m-l, X = 546 nm);
2. Mediterranean (surface, Villefranche Bay,

11/16/63, b _ 0.I m-1, k = 546 rim);

3. Mediterranean (1500 m_ Tyrrhenian Sea,
7/21/64, b _ 0.015 m-±, _ = 546 rim);

(see also A. Morel, 1965);

4. Baltic Sea (5 m, Station 2, 6/13/67,
b = 0.76 m -1, k = 525 nm, G. Kullenberg, 1967);

5. Atlantic (1500 m, Tongue of the Ocean, 7/13/71,
b = 0.037 m-l, k = 510 nm, T.J. Petzold, 1972).

Black points and circles stations,l and 2 respectively

(TI and T 2 9f the preceding figure.) (Pacific, J.E.
Tyler, 1961).

gradually, to the degree that the scattering capabi_tv of the water

decreases, and thus to the degree that the volume f_nctions decrease in

absolute value. With a satisfactory approximation, and taking
experimental uncertainty into account, this orderly arrangement

of indlcatrices was checked by tests of more than 150 samples

taken from _,idely separated areas (English Channel, Atlantic
Ocean, Mediterranean Ocean, Indian Ocean). The most markad

irregularities (for such irre_ularitles did occur)pertained

almost exclusively to backscatt-ring (more precisely, e > 120°).

This gradual transformation is also illustrated (Fig. 1.3) by

the approximately regular variation in the ratio of asymmetry

_(45°)/B(135°). This ratio decreases from a nelghb_ring value

4
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Fig. 1.3. B(45°)/B(135 °) ratio characterizing the asymmetry of
the indicatrix for seawater, expressed as a function of B(90 °)

for various types of seawater (X = 546 nm). From the expression

relating B(0) to B(90°), this ratio can easily be found to
be:

B(45) = R(45) (B(90) + Const
Bi--_5) R'(135) (B(90_ + Const

and varies with B(90) according to a hyperbolic law. Two hjper-

bolas are plotted on the basis of the average values (upper curve)
or extreme values (lower curve) assigned to R(45) and R(135).

Key: a. Western Mediterranean

b. Eastern Mediterranean
c. Indian Ocean

d. English Channel

on the order of 12 to reach values as low as 2 when the water
changes from an extremely scattered state to extreme clearness.

In Fig. 1.3 and in all subsequent cases the unit indicated for

the volume functions is m-l, and not m -I steradian-1, as
it should more properly be stated (this expression remains

understood and was omitted for convenience).

Since turbid waters show relatively similar and extremely
asymmetrical indicatrices, since only "clear" waters result in

varied and more symmetrical shapes, it is logical to

attribute this change at least partially to the more or less

sizable role of molecular scatterir_j. The effect of this factor

5



must be known in order to proceed to a study of the residual

variations, which themselves would thus be attributed solely to

the particles.

This point may be studied in a simple manner without the

additional necessity of knowing the characteristic values for

molecular scattering (A. Morel, 1965). By using the indices p

and o to designate the respective parts attributable to scat-

tering of particles and of the water itself, it is possible
to break down the volume scattering functions at e and at 90°:

s(e)= 6p (o)+ so (e) _(9o)-- Bp (90)+ so (90)

and from this to formulate the equation:

B (e)

(e) - _o (9) =_;7"_1 (_ (9o) - _o (9o))
P

If for various samples 6(e) is used as a function of 6(90), the

distribution of experimental points can be found to occur

generally in linear fashion. This means that the equation

6_(8)/6p(90) = R(8) is relatively constant on a first approxima-
t_ on and characteri_es- scattering by the particles alone.

It should be added that if the linearity is unchanged for water with

a high scattering capability, this line should pass through a

figurative point corresponding to optically pure water, with the

coordinates 6o(e) - 6o(90) (the value for 6o(90) may be estimated

indirectly and approximately in this way). Figure 1.4 shows
example_ of this procedure.

Computation of regression I reveals that the correlation

coefficient, which is high for small angles (greater than 0.96),
is considerably lower for large angles (3.86 at 150 °), thus
showing that sizable variations occur only in the particle in-

dlcatrix and not in that for seawater (water + particles). C.nthe other

hand, the values for the average gradients, that is, the various
values for R(8), are not significantly d_fferent for the three

lengths considered. Using R(e) as a function of 9, one obtains

a representation of the "mean" _ndicatrix for the particles
alone (see Figs. 1.6, 1.9 and ±_I.7 in Part 3). Indicatrices for

turbid water do actually tend toward this form of
maximum asymmetry; examples borrowed from V.W. Reese and

/7

_erformed for _ = 546 nm at a maximum for 112 values a_d for

= 436 and 366 nm at a maximum for 26 values (36 values for

the specific angles 45 and 135°). Some points diverge very

considerably from the linear configuration. Usually, but not
necessarily, these correspond to coastal samples which are

proDably loaded with terrigeneous Darticles. No systematic

study of these deviations has been made so far.
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Fig. 1.4. Points representing various samples obtained for wave-

lengths 436 and 3o6 nm and two angles 0, 45 ° and 135 °, t_sing

B(8) as a function of B(90). These figures complement those

previously given eor X = 546 nm (A. Morel, 1965). They deal with

various types of seawater: seven samples from the English Channel,
15 from the Mediterranean (eastern and western), five from the

Atlantic (Madeira region), and nine from the Indian Ocean
(Madagascar region). The circles represent optically pure water

(cf. Section 2.1).

S.P. Tucker (1970) are an excellent illustration from this stand-

point (cf. Fig. 1,6). T_o observations should be made with respect to

to this curve: due to the fact that it is a mean curve,

there are some special cases which it represents very imper-
fectly, and in addition, in th:Ls mean_ particles present in

turbid water are favored to some extent (since the computed R(0)

equations are extremely dependent on the most highly separated

points corresponding to water with the highest scattering capability).
These points will be re-examlned later (Section 3.1).
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Fig. 1.6. Scattering Indicatrices determined

by J.W. Reese and S.P. Tucker (1970) at
depths of between i and 15 meters in San

Diego Bay on 6/30/1967. The attenuation

coefficient C is greater than 1.70 m-l_

the absolute values may be read on the
scale at the left. With the scale at the

right, the "mean" particle index (A.

Morel, 1965), normalized to 90 °, is plotted
in an unbroken line; the broken and dotted

lines show particle indicatrices computed from

the measurements made by T.J. Petzold
(1972) for the same two stations noted

previously, respectively Station $ (Atlan-
tic) and 5 (Pacific).

I. 3. ,:,:_se of Smal_

(e <
< 30° )

Given the

extremely high

values assumed by
the seawater indica-

trlx in this range of

angles (Fig. I.l),
molecular scattering

o!ays only a negligible
role here (since

it varies with the

angle only by a ratio
of less than 2;

cf. Section 2.1

below). Figure
1.5 shows a few

examples of
indlcatrices in this

sma!: angle

range. Two of

them are mean

curves, that

obtained by D.
Bauer and A. Mo_el

(1967) from 58

measurements

taken in the

English Channel
and the Mediter-

ranean (at wave-

length 550 nm),
and that of F.

Nyffeler (1969-

1970) computed
from 66 measure-

ments taken in

the Mediterranean

(in sltu at wavelengths 455, 559 and 599 nm using the previously
mentioned device ind in vitro at wavelengths 488.0 and 632.8 nm).

In general, it may be noted that this part of the indicatrix

_oes not vary greatly (cf. above references), and also

that the influence of the wavelength, which is not detected, is

slight, if it exists at all. There is satisfactory agreement

among these various findings, especially if one considers that
for measurements as delicate as these, systematic error and

error due to the experimental device used are probably

inevitable. Thus the slight incurvation and decrease in gradient

REALITY OF THE



toward 3° to 1° shown by some curves seems to manifest such an

instrumental effect. Indeed, the recent measurements made by

R. Morrlson (1970) and T.J. Petzold (1972) using the equipment

of the Visibility Laboratory at Scrips Institute show that the

increase in 8(0), which approximately follows a law of e-1. 6

between l0 ° and 1°, Is extended to angles less than 1°. This

rapid increase is precisely the most notable finding revealed

by these recent measurements; the volume function Is found

to gain nearly two orders of magnitude between 1° and 0.1 °.

As will be seen later on (Part 3, Section 3.1.3), even the

value of these coefficients is probably not independent of

the scale umder consideratlon (or, if one prefers, the scattering

volume considered, _.hlch, depending on its size, permits or does

not permit a particle to be considered as a scattering center

cf. 3.1.i, 3.1.3, Part 3).

2. Role of Molecular Scattering

2.1. Review of Useful Values for Water and Seawater

Measurements performed on seawater optically purified by
repeated filtration have furnished the value of volume scattering

functions for molecular scattering_. An attempt was made to

confirm these values by additionally performing measurements

on artificial seawater, on sodium chloride solutions (which

are easier to purify than natural seawater) and also on pure

water prepared in this instance by evaporation in a vacuum
(A. Morel, 1966, 1968a). The scatterlng indicatrlces obtained for

these solutions and the water itself are in effect completely

symmetrical (which may constitute a criterion for optical purity)

and obey Rayleigh's theoretical law (actually a version of this

law modified to take into account the anisotropic quality of the

water molecules, which produces partial depolarization), that is:

Pq0 being the rate of polarization at 90 c whose experimentalj

value Is 0.84, corresponding to the value 0.09 for the depolari-

zation factor 6 [6 is the ratio (1-p)/(l+p)]. In the case of

water, the absolute values for the coefficient 8o(90) obtained
at flve wavelengths are in satisfactory agreement wlth several

other experimental findings (at 546 and 436 run), and also with

those which may be computed by density fluctuation theory.

A detailed review of these problems has recently been made

(A. Morel, 1973b), from ,_hich has b_cn dL.awn the following table,

giving the theoretical values for 8o(90) and bo (total scattering
coefficient) at intervals of 25 n_ for optically pure water and
seawater.

/8



Fig. 1.5. Scattering indlcatrix at small angles (the two

scales are logarithmic). The positioning of the curves
in relation to each other is arbitrary.

l: S.Q. Duntley (1963);

2: Y.E. Otchakovski (1965);

3: M. Kozlianinov (1957);

4: G. Kullenberg (1968);

5: D. Bauer, A. Morel (1967);

6: F. Nyffeler (1970);
7 and 8: T.J. Petzold (1972), Station 5 (P_Lclfic) and

Station 8 (Atlantic), respectively; that is,

respectively, the most scattered water (b =

=_0-27 re'l) and the clearest water (b = 0.037
m ± )considered by this investigator (aside

from port .... *_

i0
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It may be noted that if an attempt is made to express the

molecular scattering of water (or seawater) as an exponential
function, the best expression is X-4-32. The fact that the

exponent _-_**_li from 4 arises basically from the dispersion
of the Indlcatrix.

TABLE I. THEORETICAL VALUES FOR 8o(90) _D b o AS A FUNCTION OF /9
WAVELENGTH. THE OTF_n VOLUME FUNCTIONS So(e) MAY BE DEDUCED
FROM 8o(90) BY _ANS OF THE EXPRESSION BELOW. INTEGRATION OF

THIS SAME EXPRESSION OVER THE ENTIRE SPACE, WHICH LEADS TO b =
_ 8M 2+6

3 8o(90) i+---_'MAF_S IT POSSIBLE TO COMPUTE bo (6 IS ASSUMED
TO BE EQUAL TO 0.09).

I

lwater
-4 -I

%o(l° ) 6" 7i

_90_ .... _ )i _._I _.24 ',

>, (r_-.,)

_L..: I_'..5 ! ....

I
1

_p- .... I

"_: 8 23.3 I 19 3 16.2

600

0.68

10.9

o.88

14.1

Scatteringls highest for solutions, since in this case an

additional term is added, explained by fluctuations in concen-

tration. This term may be computed, at least for dilute and

ideal solutions, from the molecular weight of the solute and the
increment in the indicatrix produced by its presence. In this way

measurements performed on sodium chloride solutions can be

interpreted and subsequently will furnish a term of comparison
for the values relative to seawater. Thus seawater shows values

6% higher than those of a sodium chloride solution with the

same chloride ion concentration, and 30% greater than the values
for water.

2.2. Relative Importance of Molecular Scatterin$

Given the marked asymmetry of the particle indicatrix, molecular

scattering ts especially likely to play a significant role for
the tall end, especially where the indicatrix is at a minimum,

toward 120 or 140 _. When the water is turbid, the relative

influence of molecular scattering obviously becomes negligible

at any angle; inversely, for clear water it may be of interest

to determine what the maximum influence might be (at least with

the measurements available, with the understanding that the

possibility of the existence of clearer water is in no way
excluded).

ii
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13(e)/13(90) X
rim

546
436

366

546
436

366

1.40 0,32 1,08

"_ '_') 0.44 2,7_

6,40 0,53 5,87

15,6 14.5 I,I

22.0 19,2 2,8

29.0 23,1 5,9

rc1-_

-0.0i6 28.7.64 Tyrrh.

0,0_S _ofond 38_44 N

0,031 I 1000m 14°17E

i

0t6S 5-6-64 Man_:he

0._7 Jap,ofond. 4_JA30N

1,03 I 20 rn 4_COE

b

Fig. 1.7. Indicatrices normalized to 90 ¢. Measurements

performed at three wavelengths on one sample of turbid

seawater (English Channel) and on another very clear

sample (Tyrrhenian Sea).

Key: a. Depth

b. English Channel

The curve in Fig. 1.2 or curves i, 2 and 3 in Fig. 1.7 are /i0

representative examples of deep clear water. In this connection,
it is possible at each angle to form the ratio 2 Bo(e)/_(e) of
the molecular scattering to the scattering (total) observed for

one of these typical cases (that of Fig, 1.7), where the indicatrix

is determined at three wavel_ngths. One thus obtains the ratios

2
Rather than using the theoretical values given in Table I,

experimental values obtained in tests of purified seawater (A.

Morel, 1968) were used to form this ratio; these values were

slightly lower (approximately 10%). This was deemed preferable

since measurements of both the purified water and the sample

were performed with the same device and under the same conditions;

uncertainty in regard to the absolute values is eliminated in
the ratio.

12
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Fig. 1.8. Relative importance of
molecular scattering as a function

of angle. The curves, representing
three wavelengths, are based on

the sample from the Tyrrhenlan

Sea (cf. Fig. 1.7). The small
circles are deduced from the meas-

urements made by G. Kullenberg

(1968) in the Sargasso Sea (10 m)

at wavelength 460 nm.

used in Flg. 1.8 as a

function of the scatter-

ing angle. Due to the

pronounced selectivity

of molecular scattering,

the relative importance
of the latter increases

as the wavelength de-

creases, and in all cases
it is at an effective

maximum for angles between
90 ° and 140 °. The total

molecular scattering co-

efficient bo can thus be
compared to the coefficient

b of the sample (computed

from 8(30°), cf. Section
6). In the case of this

extremely pure water, the
ratio bo/b would increase
10% for I = 546 nm and

30% for I = 366 nm. It

should be added that
similar results have also

been obtained in the

Eastern Mediterranean

(laboratory team, 1969)
and in the Atlantic in

the Madeira region,
generally at depths greater than I000 m, while analogous values

may be deduced from the measurements made by G. Kullenberg (1968)

at only l0 meters, but in the Sargasso Sea, providing definitive
proof of the high purity of the waters of this sea.

3. Particle Scatterin$ Indicatrix

3.1. Results

A "mean" indicatrix was obtained by an indirect procedure,
which, it should be recalled, is probably more representative

of the particles present in turbid water (Section 1.2). The par_
ticle Indicatrices may be determined, case by case, by subtracting _

3 Here again problems arise in attempting to ana!yze clear water.

On the basis of the statements which have Just been made, the

part 8o(e) to be subtracted is preponderant for mean angles.

Thus the experimental uncertainty in regard to 6(e) actually is

carried over integrally to BD(0) , resulting in relatively sizable
error. As a result, the tai_ end of the indicatrix obtained

ears to be more variable than it actually is, despite the fact
a_ a few aberrant indicatrices have been set as!de.

13



_he volume functions _o(e)- For the three wavelengths
indicated, Fig, 1.9 shows the range containing all the particle
indicatrices computedin this way (ll2 for _ = 546 nm, of which 26
correspond to measurements taken at the three wavelengths 546,
436 and 366 nm). Only the tail ends for th_ wavelength 436
nm are completely plotted as an example.

Figure 1.6 furnishes another illustration, the computa-
tions being made on the basis of the measurements taken by
T.J. Petzold (1972), which have already been shown (Figs. 1.2
and 1.5); two Indicatrlces were chosen,L corresponding respectively
to the clearest water (1500 m, Atlantic) and to the most turbid
oceanic water (coastal,Californla). After deduction of the
part attributable to molecular scattering, the indlcatrices ob-
tained were plotted conjointly as a mean indicatrix.

Without being more specific, in view of the uncertainty in
the case of clear water, it seems that in this type of water
indicatrix for suspended particulate matter generally has a very

marked minimum, frequently followed by a rapid increase toward
150o. The mean indlcatrix, shown as a dotted line in these

figures, is virtually identical to the curve representing the

lower limit of range for angles greater than q0°_ for angles
less than 90 ° , this indicatrix is appreciably in this center of

the range.

3.2. Adoption of a "Typical" Particle Indicatrix /12

Knowledge of the particle indicatrix is indispensable in solving

a large number of oroblems, both those dealing with the relation-
ships between scattering properties and suspended matter con-

tent of the water, and those dealing with the visibility

of immersed objects or the propagation of daylight or artificial

light. Study of the asymptotic system of submarine luminances

(L. Prieur, A. Morel, 1971), or more generally, all problems

linked to radiative transfer, reveals this necessity. For these

computations or for these previsional models, it is useful to
have available a "typical" particle indicatrix, that is, one consti-

tuting a satisfactory approximation. For this purpose, the
"mean curve" obtained between 30 and 150 ° may be used and

combined with the mean curve for angles between 1.5 ° and 14 °.

A connection between these two parts was made earlier (D. Bauer,

A. Morel, 1967) by using the measurements made by N.G. Jerlov
(1961), which were performed to a limit of l0 °. The _Leasure-

ments subsequently performed by F. Nyffeler (1969-1970) between

1° and 25 ° have shown that this interpolation was correct. Under

these conditions, the scattering coefficients for this "typical"
indicatrix are as follows:

14
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Fig. 1.9. See text. These

curves correspond to 26

measurements simultaneously
performed at three wave-

lengths (two samples from

the English Channel, 13
from the Mediterranean and

ll from the Indian Ocean).
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TABLE II. "TYPICAL" PARTICLE INDICATRIX.

First column: volume functions normalized to

90 ° . Second column: normalized coefficients 8(8), that is, nor-

malized with respect to the integral yielding b (cf. Appendix i).

For this computation of the integral an exponential extrapolation

of type 8(8) = exp (-k@) was performed, between 1 and i0 °. This

yielded a value for the integral between 0 and 1° , equal to 9.7%

of the total integral between 0 and 180°. * This value may be

low, in view of the results obtained by T.J. Petzold (1972).

This investigator computes as between 0.I ° and 1° the values

constituting 20 to 30% of the final value for the integral (0-180°).

Last columns: polarized components (cf. Section 5), perpendicular

(81) and parallel (82) to the scattering plane, cQmputed from

the rate of polarization:

p(_)= =

Bz(e)+ B2(0) _(e)

the values for p(e) used are shown in Fig. 1.13. The "typical"

indicatrix is shown graphically in Fig. III.7 (Part 3).

e o

5

6

7

8

9

i0

12

16

18

20

22

24

26
28

341,<;o 77.5

26100 58,8

19100 _3.0

85oo 19.2
4750 10.7

2990 6.7

1920 _,32

13oo 2.93

915 2.06

670 1.42

5oo 1.12

314 0.71

22h 0.505

168 0.378

130 0.298

102 0,230

75 0,169

58 0,130

h7 0.106

38 O.O856

8°

3o

h5

6O

75

9O

105

!2o

135

15o

(165)

_) xlO 3 xl0 J xlO3

31.4

8.50

i .61

--i

0.7_

C.65

0.65

0.87

0.17

70.7

19.1

7.68

3.63

2,25

1.67

1.46

1.46

1.96

3.8

77.5

23,3

11.2

6,1

h,OO

2,82

2-,15

1,87

2.18

65,O

Ik.T

4,2

1,15

0,50

0.50

O.75

1 .O5

1.75

*The value of the total integral is 444 if 8(90) is assumed to

be identical to l. An error was overlooked when these compu-

tations were first presented (A. Morel, 1968), the indicated

value being 444/_ rather than 444. The coefficients of the rela-
tionships between 8(e) and b were in error in the same equation

(cf. correction, 1970). Possible variations in the indicatrix, par-

ticularly in the forward part, result in possible variations esti-

mated at I17% of the integral (cf. Sections 2,2 and 2.3, Part 3).
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It should be emphasized that by its very nature, a typical
indicatrix of this sort is nothing more than a mean which is

judged co be satisfactory. It is precisely the variability
about this mean which will be used during the theoretical

interpretation (Part 3, Section 2) to find data on the nature

of the particles (more exactly, their indicatrlx, as well as on

the law governing their distribution.

4. Influence of Wavelength

The qualitative asoect of the problem, that is, the
influence on the shape of the indicatrix, should be dis-

tingushed from the quantitative aspect, that is, the influence

on the magnitude of the scattering phenomenon.

4.1. Variations in the Shape of the Indicatrix

Actually, this question has been implicitly examined above.

To give a brief summary of the main points: when the water is

clear, the indicatrix, which is already relatively sym_etrlcal,
becomes more so if the wavelength decreases, due to the increas-

ing role of molecular scattering, which is highly selective. On

the other hand, for turbid water the shape of the indicatrix

remains virtually unmodified by the change in wavelength, thus

indicating that the molecular scatterin_ is negligible, and that
in addition the particle indicatrix is virtually insensitive to this

factor. Figure Y.7 gives examples of these two cases.

After molecular scattering has been subtracted, the shape /13
of the particle indicatrix effectively varies with the wave-

length; itwas not possible to show any systematic law for this
variation. 4 On the average, when normalized to 90 ° the indicatrices

are virtually the same, as shown by Fig. 1.9. The measurements
made by N. Nyffeler (1970) also indicate an absence of marked

influence in the small angle range.

4This was true in the case of our measurements, at least, since

Hinzpeter (1962) notes that the indicatrix is less a_netrical at

400 nm than it is at 700 rum; this probably is a particle _ndicatrix,
since these results were obtained for the turbid w_:ters of the
Baltic Sea.

16



4.2. Scattering Selectivity

4.2.1. Volume Scattering Functions

On the other hand, when molecular scattering is subtracted,

it appears that Sp(0) (cor_sidered as an absolute value in this
instance) varies systematically with the wavelength, increasing

slightly as the wavelengti_ decreases. Figure I.lO shows varia-

tions in the ratios of Bo(0,k) to Bo(0,546) as a function of 0,
when the value of X is 436 or 366 n_n. For reasons which have

already been indicated, the ratios are better defined at small
angles, since the variability of the indicatri× at large angles

results in an increase in the standard deviation. Analogous
results have been obtained with Atlantic water (for 0 = 30 ° and

= 436 and 546 rim), which have been presented elsewhere (A. Morel,

1970). J. R. Zaneveld and H. Pak (]973) have used measurements

taken at 45°; the ratio of the scattering coefficients to wave-

lengths of 436 and 546 nm respectively varies approximately

from 1.10 to 1.45 according to these investigators. (These do

not seem to be coefficients relative to single particles, but

directly measured coefficients, and thus the ratio may be
slightly affected.)

indirect method. A precise although indirect method (A.

Morel, 1967) also makes it possible to determine selectivity

for a given angle. This method has been used for five wave-

lengths (578, 546, 436, 405 and 366 nm) for a large number of

values at 90 ° (Fig. I.Ii), and for a lesser number at 30 ° ,

nevertheless furnishing appreciably identical results, _aking
the confidence factor into account (Fig. 1.12). This method

is based on the following principle: if the measurements are
performed using optically pure benzene as a reference, the
scattering selectivity of a sample may be determined from

the scattering selectivity of benzene, experimentally known

and theoretically computed. In practice the procedure may be

as follows: taking r as the ratio of the scattering coefficient
of the sample to that of benzene (for an identical angle 0,

which is not written for purposes of simplification), for _ =

= 546 nm one has r(546) = ro(546) + ro(546), and for all other

wavelengths: r(X) = ro(X) + r_(_), functions o and p denoting,
as above, the part attributable to pure water and that attribut-

able to the particles: below b the indicatrix represents benzene.

To state this explicitly:

/14

(5h6) + _ (546)
o p_____
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and assuming that when the wavelength is changed, each scattering

coefficient is multiplied by a specific coefficient k, that is

by Ko, Kp and Kb respectively, one may write:

K° B° (5h6) + Kp Sp (5}_6) K ,'<r (_)= o= -- r (546) +--_ r (51;6),

and finally, reintroducing r(546), one obtains:

K

r(k) = Const + -_ (r(546) - ro(546))
Kb

2.0

1.5

L1:23
1.0

I

30

2.0 ----T-

1.5

1.0

_P(0)366/ [_P(0)546 1" /{Ji -

23 19 17 I1 23

I I I *

60 e ° 90 120 150

11 ! i!

_p(g)430/_p(e)546

T

i

:26 22 23 17 24 23

Fig. 1.10. Ratios of 8p(e,X) to

So(e,546) given as a function of ,
wlth k = 436 and 366 nm; the un-

broken line represents the average

value; the vertical llne corresponds
to the standard deviation computed

for N measurements; the values for
N are indicated. The maximum for N

is 26, corresponding to 26 samples

on which measurements were per-

formed for three wavelengths in

turn (see caption to Fig. 1.9).

If the scattering

selectivity of the

particles was nil (Kp = 1),
one would obtain a

linear equation between
r(1) and r(546), the

gradient being the
inverse of the value

for Kb.5 In actuality,
by making r(X) a function

of r(546) for each sample,

one obtains approximate-

ly linear forms,
but different gradients

for i/Kb, which thus

make it possible to

evaluate Kp. These
values, obtained fo_
e = 90 ° and e = 30 ° ,

are given as a function

of the wavelength in

Fig. 1.12, and are

compared to the curye_
corresponding to k-u.o
and k-l.2 selectivities;

it should be noted that

they are very close to
the values obtained

directly by the first
method.

5The values for Kb characterizing the

[note continued on following page]
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2.0 ' I T ! I '|

_( ),,e)/_p(5.16,ei e: 30 ° et 90 °

1.0

4.2.2. Total Scattering /i___55
Coefficient

X (,n,)
-.1 I ............ L......... I ......... J = J._

400 $00 600

Fig. 1.12. Results obtained by the
method illustrated by the preceding

figure, dealing with the scattering
selectivity of particles (at 30 °

and 90°). The vertical lines cor-

respond to the standard deviation

for the values, and the curves cor-

respond to the laws indicated.

Apparently there has

been no systematic direct
measurement of b at

several wavelengths for

a single sample or at
identical locations and

depths. Conclusions

-- which are, moreover,

relatively controver-
sial -- may be drawn only

by hypothetical means.
If the shace of the par-

ticle indicatrix may
be considered insensitive

to wavelength_ the selec-

tivity found for various

angles (which roughly
corresponds to a 1-1 law)

is related to the total
coefficient b by an integral.

This was the theory set forth by J.R. Zan_veld and N. Pak

(1973), for example, and it is probably well founded.

Another hypothesis consists in assuming that in the atten-

uation due t_ the particles, the scattering factor is heavily
preponderant over the absorption factor. This is the theory

5(cont'd) of benzene which were used are as follows (A. Morel,

1966): I nm 578 546 436 405 366

Kb 0.79 i 2.78 3.88 6.36

_his hypothesis is probably partially inaccurate for some bands

of the spectrum in the case of highly colored particles; it does
seem to be realistic, however, as can be shown in an approximate

manner by the following experiment: when a spec_rophotometer is

used to determine the spectrum of a seawater sample in relation

to a filtered sample of the same water, the particles simultan-
eously serve as scattering and absorbing centers. The same par-

ticles, collected on a filter with the same diameter as the tank,

will act primarily as absor bin_ centers if the filter has been
"brightened" by the oil used for immersion (the reference consists

of an unused filter brightened in the same way; C. Yentsh method,

1957). Now, none of the measurements made in this manner were

comparable to those made in the preceding experiment, unless a

volume at least 20 times greater than that of the tank is filtered.

This sh_ws that scattering, has a heavy influence on absorption. The

approximations made: a spectrophotometer does not measure c, but an

intermediate term between c and a, and the particles on the filters
still have a scattering effect. These approximations tend in the
same direction and reinforce the conclusion.

19
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Fig. I.ii. r(90,X) _ven as a function of r(90,546)

for various samples (nee text). The open symbols

correspond to measurements taken in the English Channel,

and the solid symbols to measurements taken in the

Mediterranean.

Key: a. Enlargement

espoused by W.V. Burt in 1955. If dispersion is observed for

the attenuation coefficient c, virtually no part of this

phenomenon may be attributed to the coefficient b. W.V. Burt

interprets in this way measurements performed with a spectro-

photometer and spectra obtained corresponding to exponential

laws ranging from approximately X-1 to _-2.
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5. Folarizat ion

5.1. Results

H. Hinzpeter (1962) was apparently the first to show that

the angular distribution of the rate of polarization of natural

incident light is very appreciably symmetrical on either side
of 90 ° , with a maximum _alue at this angle on the order of 0.40

to 0.65 (slightly lower at 700 nm than at 400 nm), and values
on the order7 of 0.10 at 30 and 150 °. G.F. Beardsley (1968)

has measured polarization in all possible configurations, with

combinations of polarizer and quarter-wave plate simultaneously

on the incident and scattered beams. In this way it is possible

to determine, for various angles, the 16 components of the

matrix to be applied to the four Stokes parameters characteriz-

ing the incident wave (cf. Eq. (1.12), Part 2). The values for

this matrix are low for non-diagonal components, which should

theoretically be nil if the particles are spheres. However, _he

strongly diagonal nature of the experimental matrix shows that

assimulation by spheres constitutes a satisfactory approxi-
mation (cf. 1.2, Part 2).

With natural incident light, the variation of the rate of

polarization with the angle e is approximately symmetrical, as

shown by Fig. 1.13, which gives on the left an average curve

corresponding to five measurements made on w_ter from the English
Channel and three on relatively turbid waterO from the Mediter-

ranean (Villefranche Bay). The maximum and minimum values

observed at 90 ° (60% and 79%) are represented by the vertical

line. The dotted curve corresponds to the curve determined for
optically pure water (A. Morel, 1966), with p(90 °) = 84%. The

righthand part of this figure shows the curves obtained by G.F.

Beardsley (1968) (with the exception of that obtained at the

"Atlantic 4" station); these show that the maximum rate (at 90 ° )

cannot exceed 50%, and in addition that the angular dependence

would be more complex in the 20-40 ° zone.

7For the extremely turbid waters of the Baltic Sea.

8Measurements of clear water, from which the influence of molecu-

lar scattering must also be subtracted in order to compute the

polarization due to the particles alone, are subject to caution

due to the loss of sensitivity attendant on positioniug of an

analyzer. The eight measurements used here deal with water v_ith

an adequate scattering capability (b > I m-l), for which the in-

fluence of molecular scatterln_ may be discounted.
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Key: a. After Beardsley
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5.2. Variability of Rate of Polarization at 90 °

The systematic measurements performed at 90 ° by A. Ivanoff

(1961) show, for the seawater samples studied, that the rate of

polarization at this angle varies extremely widely from a value
(80%) in the neighborhood of that of pure water down to low

values scarcely higher than 40%. This variation occurs in a

very regular manner, with the water samples with the highest
scattering coefficient being roughly those showing the lowest

rate of polarization. An attempt may be made to determine
whether this effect is due solely to the fact that the role

of molecular scattering, for which the rate of polarization is

high, gradually becomes negligible, or on the other hand whether

the rate of polarization of light scatterin_ Oy the particles is

itself variable, and what the nature of this variation may be.

By definition (cf. Part 2, Section 1.1), the rate of polariza-

tion is the ratio of the intensity of polarized light in to the
total intensity In + In of the natural light and the polarized
light. Breaking down the factors attributable to scattering by

the particles and by the water itself (f_c_nn_ p end o respec-
tively), the result is:

_ [ + I

P = i + _n I p + i o + inp + ino

/16

in the same way, one l[La,y" write:
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The denominators of these three expressions are respectively

proportional to 8, 8o and 8p. The result is thus:

Be

p = -_-po + B-_pp

that is, an expression corresponding to a "mixing law," where £

varies with 8 according to a hyperbolic law:

B

P _ Pp + _ (Po " Pp) ;

p tends toward the limiting value pp when the scattering co-

efficien_ 8 is high, and toward Po when the scattering is merely
moleculaz scattering (8o/B = 1).9

For purposes of comparison with the experimental values

obtained by A. Ivanoff, the logarithm of 6/B o as a function of p

was used rather than 8/8 o (see Fig. 1.14), two lines were
plotted delimiting the range within which the experimental

points were concentrated, and the median line was also plotted.

The curves correspond to various values given to PO a priori,

the value for Po being 0.84. It appears that the _istribution
of experimental points corresponds to a variable rate of
polarization for particles from 0.7 to 0.4, and more importantly,

that these variations are relatively systematic in nature. The

particles in the most turbid water samples are the least
polarizing, while those in clear samples show variable rates and

may reach values on the order of 0.8. (This would moreover

explain why the extrapolation made by A. Ivanoff resulted in a
value -- 0.88 -- which was slightly high for molecular scattering.)

Finally, these values, especially those relative to 90 °, are

in agreement in their diversity and confirm the varJabi 7_*__j of

p(90). As will be seen in Part 3, this variability is theoretic-
ally plausible, but some of the causes which may be found for

this phenomenon, much _s the !ne],1_ee ne pn_h_nle _b_p_ _ w_]l
remain difficult to isolate.

6. Relationshi s_ween Scattering Coefficients

The use of certain ratios for volume s_**___,,o functions

has been recommended to serve as a descriptive element _r the indica-
trix (for example, the ratio 8(30)/_(45), A.F. Spilhaus, 1968).

More generally, confronting the difficulty of directly measuring
the total scattering coefficient b, an attempt has been made to
evaluate this factor on the basis of measurements of a given

9There is no hypothesis ir_ the_ computations wi_:h the exception

of that based on the additivity of scattered waves.
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Fig. 1.14. For various values pp
for the rate of polarization of

particles at 90 °, variations in

the rate of polarization of a

sample depending on the value of

its scattering coefficient at 90 ° ,
unity being molecular scattering,

8o(90), at the same angle. The

ordinate scale is logarithmic.

Key" a. Rate of polarization

volume function 6(e).

N.G. Jerlov has used this

method since 1953 and
derives b from 8(45°).

Such methods assume that,

at least on an approxi-

mate basis, the ratio
6(e)/b -- that is, the
so-called "normalized"

6(e) coefficient -- is

sufficiently constant.

In using these methods,

the precaution of sub-

tracting the part attribut-
able to molecular scattering

from 6(8) has not always

been taken; this results

in inaccuracies, especially
if 0 is greater than 45 °

(and even at 45 °, if the

water is extremely clear).

Such equations may
be written on the basis

of the values for 6(e)

relative to the "typical"
particle indicatrix and

taking molecular scatter-
ing into account (A.

Morel, 1968). The
result is thus:

/17

1
b z

£p< _ )

(_(9)- %(e)) .* _o ,

6(0) being the measured value for the sample, from which the

molecular part Bo(e) is subtracted. With the values given in

Table II, this equation is written as follows for 30, 45 and 90°:

b. 1_. (_(3o) - _o(3O)] ÷% , _ = _s (_:-::; - _o(_,s)) • b°

b _ _m5 [_(90) - %(9o)) * b° .

Frequently 80(30) may be omitted. 60(45) may be omitted only in the
case of clear water (cf. Fig. I._), and 6o(90) only in

the case of extremely turbid water. The possibility of omitting
these terms decreases, of course, as the wavelength decreases.

The va].ue bo, which varies with the wavelength, is included in

24
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Table I. The possibility of omitting this term is the same as
that noted above.

A detailed review of the experimental values obtained by
a number of investigators for these ratios, either between two
angles or between the volume function and the total coef-

ficient, will be made subsequently (Part 3, Section 2). The

variability of these ratios, which actually reflects the
variability of the particle indlcatrix, theoretically may be

interpreted as the variability term for the particles themselves.
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PART 2 /18

Introduction

The search for a theoretical interpretation for the experi-

mental results includes two aspects: first, determination of

whether one's knowledge of the marine suspended matter

compatible with that on scattering properties -- in other words,

whether the former explain the latter; and second, whether it

is possible to use observation of these scattering properties to

determine information on the particles which is difficult to

obtain by other methods. These preoccupations have already

motivated several studies; without providing an exhaustive list,

these notably include those of Y. Otchakovsky (1965), T. Sasaki

(1967), and T. Sasakl etal. (1968); and recently, those of

H. Pak etal. (1971), G. Kullenberg (1972) and H.R. Gordon and
O.B. Brown (1972). The last three studies were made not on the

basis of published and tabulated values for Mie functions, but

rather with the use of data computed for this purpose. Never-

theless it does not appear that the possibilities afforded by

theoretical methods have been systematically explored, nor that

the comparisons made between theoretical and experimental results

have been methodically carried out. It is first necessary to
interp_ t the results of theoretical computations in order to

be able to predict the influence of various parameters without

having to perform additional computations. A guideline may be

drawn from this condition which will aid in performing compari-

sons. The methods presented here are an effort in this
direction. The object of this second part is thus to furnish

the theoretical bases necessary to provide a solution for the

problem, and to show what factors may be predicted by computa-

tion under what conditions. A comparison of the theoretical

results thus obtained with experimental data is reserved for
Part 3.

First of all (Chapter i), there is a brief review of the

general relaticnships between the state of polarization of the

incident wave and that of the scattered wave. More thorough

development of these relationships may be found in the fre-
quently cited article by F. Perrin (1942), as well as the

chapters dealing with this subject in the works of Van de Hulst

(1957), Presendorfer (1965) and DeirmendJian (1969). The

purpose here is merely to determine the framework within which
the most limited case considered below may _e fcund --

that is, that in which the incident light is assumed to be

natural or rectilinearl¥ polarized (perpendicular or parallel
to the scatterinz r!ane).

Marine particles in suspension with a wide range of size

variation are within the province of the _e theory (19Q8).

Applied to electromagnetics theory, this theory uses Maxwell

equations to obtain a rigorous analytical solution to the
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problem of the scattering of a flat wave by a spherical particle

of ar<y given size. From this standpoint, it coincides with the
Raylelgh theory when the particles become extremely small in

relation to the wavelength, and when the particles are large,

on the other hand, it tends toward limiting solutions which

are those furnished bj geometric optics (reflection, refraction)

and diffraction theory.

No attempt has been made in this work to set forth the Mie

theory, which has become classical, especially since the publi-
cation of Van de Hulst's workl; Chapter 2 below merely reviews

the formulas necessary for subsequent development. However,

there did seem to be some value in using the numerical results

obtained by means of this theory to describe variations in the

scattering indicatrix with changes in size and index parameters,

since it is not easy to form a precise idea of these variations

from the publications available. In practical application, the

possibility of approximately predicting results guides the

choice of computations, both for indicatrices for individual

particles and subsequently for indicatrices for pclydispersed

systems. The interpretation which must be sought for these

variations actually partakes of the theories which apply at the
extremities of the Mie range, that is, the theories of

Rayleigh and Rayleigh-Gans on the one hand and diffraction

and geometrical optics on the other. Moreover, the Rayleigh-
Gans approximation furnishes elements which are highly important

in predicting the scattering properties of the poly-
dispersed systems considered.

Chapter 3 indicates how scattering properties may be computed

for a population of particles of varied size, but assumed to be

of the same nature ("polydispersed system"). The physical

significance of these computations is discussed, taking into

account the fact that the mathematical limits corresponding to
minimum and maximum sizes must be poslte_ re _ ÷_'-__a_v_i_ arbicrarily.
_,_ _ a ompiex problem which will reappear on many occasions
in Part 3.

The initial hypothesis for the computations was the assumption

that marine particles can be assimilated by transparent spheres,
which necessitates some discussion. Mie theory has been extended

to the case of nonhomogeneous spheres and te the case ef

differently sha_)ed particles (ellipsoids, cylinders, etc.),

lit is for this reason that references to the original works of

Y_e and also those of Rayleigh or Debye or Gans are omitted. In
the work of Van de Hulst the reader will find an annotated

bibliography with historical commentary at _he end of each
chapter.

_7

mh.



but the computations are generally more complex. This is an
initlal reason to limit one's consideration_ to the case of
spheres. A second, more convincing reason is related to the

fact that marine particles are of random shape, and thus the

sphere becomes the best approximation of their completely

aleatory orientation. Confirmation for this hypothesis may be
found in the experimental works of Hodkinson (1963) and of

Holland and Gagne (1970). The latter investigatcrs show that

In practice irregular particles behave as equivalent spherical

particles for scattering in natural light (except perhaps for

backscattering), but that, on the other hand, polarization Is
appreciably affected. Thls possible effect will make it necessary
to qualify the conclusions relative to polarization (Part 3). 2

The other choice, that of the exclusive use of real indices

should also be explained. The introduction of an imaginary

component to represent particle absorption would make vir-

tually no change in the results, since the term to be introduced,

which would actually be fairly hypothetical, should in any case

be very slight. Its influence would be negligible in thls case,

as is indicated by Fig. 11.17, where, everything else in practice /19

being equal, the computed scattering indlcatrix is compared with
the index 1.05 and that computed by O.B. Brown and H.R. Gordon

(1972) for the index i_05-0.I0 i. The values approximately
coincide, while the imaginary term corresponds to a level of

absorption which is already extremely high (92% for passage
through a layer i0 _m thick).

In conclusion, given the hypothesis used, the model

thus constructed is undoubtedly idealized, but it does consti-

tute an initial approach, or, if one prefers, a reference, in
relation to which it will be possible to interpret the
deviations.

i. States of Polarization and Scatterin$

i.i. Description of the State of Polarization by Stokes Parameters

For every beam of completely polarized monochromatic light
there Is a corresponding vector e_ec_rical field _ whose com-

ponents on two rectangular axes (_, i) within the wave plane
are written:

2polarlzation by marine particles is effectively different from

that which would be due to spheres, but the difference Is slight
(G.F. Beardsley, 1968) (cf. Part i, Section 5).
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r and _ may be of any magnitude but are chosen in such a way

that the cross product _A _ is oriented in the direction of

propagation of the light (incident or scattered); r is perpen-
dicular to the scattering plane, while _ is within this pl_le

(formed by the directions of propagation of the incident and scat-

tered light considered). The four Stokes parameters are

de fined by:

= E*- E 1 E;Q Er r

U = Er E + E1 E r

v --i
ncident wave

Scattered v_ve

(1.2)

Given Eq. (I.i), three independent parameters are sufficient

to describe the state of polarization: Pl, Pr and the phase shift

= ¢i - @2; in actuality there is an equation ]inkin_ the four
Stokes parameters (see Eq. (1.6) below). Expanding Eq. (1.2)
by means of Eq. (1.1), one obtains:

2 T<2 + Pl P. " --'",,iI =P r ._ .............

2 .j\ | ..._
Q = Pr2 " Pl ,"'/' .\_._.a/../ ,,:,

U = 2 Pr Pl cos6 ,' /e / \ ,*" =

V = - 2 Pr Pl sin6 . ;/'_, .-\""

(1.3)

A simple geometric interpretation for this may be given: in

a general case, the vector _ describes an ellipse whose axes are

different from the system (I, r)" One assumes that tan ¢ = e,

where e is the ellipticity (ratio of small to large axis) and

is used to denote the angle fixing the direction of the large
axis in relation to _. a may be computed by reducing the ellipse

to its principal axes:

tan 2 a = 2 cos 6
PlPr

2 2

Pr " Pi

(1.4)

The energy of vibration which does not depend on the_phase dif-

ference is: I = p_ + p2 which is assumed equal to p_. Geo-

metric considerations lead to the following new expressions:

[ = p2 p2 U = 2 2, Q _ cos 2 e cos 2 a . p cos 2 _ sin 2 a . V = p sin 2 ¢,

(1.5)
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,_ _,La_ it possible to interpret the following specific
cases :

-- If Pl = Pr, given Eq. (1.4), _ = _/4 and the vibration
is:

* either linear, on the first bisecting line (6 = 0)

or the second (6 = w). Q and V are nil, U is not

nil, and the Stokes vector is written (1.0 ± 1.0),

assuming I to be unity;

* or circular, to the right or left, depending on the

sign of 6 + ±_/2; in this case Q and U are nil,

V is not nil and the result is (1, 0, 0, ±l).

-- If Pl or Pr is nil, i = ±Q, the polarization is recti-
linear, perpendicular or parallel to the scatter_g plane,

respectively, and the parameters are (1, ±l, 0, 0).

Finally, in the general case, _ differs from the multiples
_ . , ............................ e Stokes parameters

are of any magnitude. In all cases the following equation
follows from Eq. (1.5):

12 = Q2 + U 2 + V2 (1.6)

which constitutes the total polarization criterion.

On the other hand, if the light is totally depolarized,

_ and E 2 may still be assumed to exist, but they will have
phase coherence; Pl and Pr are equal and I remains defined

in the same manner. However, none of the magnitudes Q, U, and
V is statistically distinguishable from zero on the common time

scale and the Stokes vector for natural light will be written
(I, 0, 0, 0).

If partially polarized light is considered as the

superimposition of natural light IN ana totally polarized l_ght

Ip, this is written as: i = I
_2 + I_ or iD = (Q + U2 + V 2) ,

2 ±/2

> _Q2 + _2 + V 2. In its mostr_sulting in the inequality:

general form, the rate of polarization (falling between 0 and i)
is the ratio:

(_;' + tjd ÷ V;!) 1/2
I " (1.7)

1.2. Scattering Matrices

When two waves without phase correlation are superimposed,

the Stokes parameters are additive. An optical device or, just

/20
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as readily, a scattering medium produces from an incident wave
(I0, QO, UO, VO) an emergent wave whose parameters (I, Q, U, V)
result from linear combinations of the initial parameters; in
other words, the device or the medium is characterized by a
conversion matrix with 4 x 4 coefficients:

ai! .... I
a:,2

0

Uo

VO

(1.8)

(nanges in the vector field Eo relative to the incident wave
are translated by the following linear equations linking the

components:

E. -- A- :2r,c + i_ El, o E 1 = A 3 Er,o + A 2 EI,o , (1.9)

IA] A41 thus constitutes the transformation

f
amplitude matrix,

A3 A2
l

whose coefficients are complex. By introducing Eq. (1.9) into

the _i'initions given by Eq. (1.2) and rearranging the factors,

one computes the 16 components of matrix (1.8), which when

applied to the initial parameters make it possible to compute

the final parameters. These 16 coefficients are all real and

consist of quadratic equations of type A] Ak. For scattering,

problems, "modified" Stokes parameters (If, I2, U, V) are usually

used; these are determined simply by: II (or thus Ir) = 1/2(I + Q).

12 (or thus I_) = i/2(I - Q), and U and V remain unchanged.
With this notation the total polarization criterion (1.6) will

be written: 4 I1 12 = U2 + V2. The parameters characterizing
natural light will be (1/2, 1/2, 0, 0) and the rate of

polarization deI'ined by Eq. (1.7) is reduced to: I1, I2/I 1 + 12.

Scatterin_ by Isotropic Spheres

If the particles possess certain types of symmetry, the
number of independent coefficients in the matrix should be less

than 16; an especially simplified case is that of scatterin_ by
isotropic spheres with a diagonal amplitude matrix

(A 3 = A4 = 0), the matrix of intensities which is determined
from this becoming quasi-symmetrical:
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I1

12

U

V

!I,0

12,0

UO

V

A iAI* 0 O 0

0 _t2A2* 0 0

0 0 I/2(AIA2*+ A2A_) i/2(AIA2*. A2A1_

C _ -i/2_',C_2-__ A2AI_ I/2(AIA_*+ A2AI_

(l.ll)

That is, noted with the intensity functions i (see definition

in Appendix 1):

I 1

v

7
v

].

, ')
K _

II,O

_2,O

Uo

Vo

I iI 0 0

i 0 i2 o

0 0 i 3

0 0 -i_

0

o

ih

i3 •

(1.12)

The factor i/k 2 (with k = 2_/X) arises from the fact that the

intensity functions are defined on the basis of the amplitude

functions S = kA, by iI = SIS_, i2 = $2S _ ...; the terms in the

A matrix (1.11) are the effective partial cross sections Pl, P2
... (cf. definitions, Appendix 1). This matrix includes four

terms which are not zero, of which only three are independent

since they are linked by the following equation, which is

easily verifiable on the basis of the expressions occurring in
1.11:

ili 2 = i32 + i42 (1.13) 3

Use of the matrix equation (1.12) makes it possible to

predict the following cases:

-- if the incident light is polarized elliptically (Ii, 12,
U, V) or circularly (I1, I2, O, v), or rectilinearly

but not in the directions _ or T (I_, I2, U, 0), the

scattered light is generally elriptfcal, since i3 # i 4
O; in addition it is completely polarized if the

3perrin and Abragam (1951) have shown that when spheres of dif-

ferent size are present simult _ously, this equality no

longer checks out except for the angles 0° and 180 °, the direc_
tion of the inequality which replaces it being: ill 2 > i_ 2 + i4 .
The polarization criterion can no longer be met and partial

depolarization of the scattered light occurs when the incident

wave is completely polarized. Perrin and Abragam, as well as

DeirmendJian (1969) have suggested the use of this depolarization

factor as an index of heterogeneity of size.
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incident light is completely polarized, which can easily
be verified by expanding the polarization criterion
(i. I0) for a scattered wave and incorporating the result
into Eq. (1.13).

-- if the light is polarized rectilinearly in direction r
or _ (ll, O, O, O) or (I2, O, O, 0), the scattered light
integrally retaius this property.

-- finally, if the light is natural (1/2, 1/2, O, 0), the
scattered ].ight is partially polarized, since in general
i I differ_ from i2; its total intensity is i = (1/2) (i I +
12) and the rate of polarization, as indicated above,
is: (i I - i2)/(i I + 12).

Case of 0° and 180 ° An$1es

It will be seen later (Section 2.1.2) that Sl(0) - $2(0) ;
given Eq. (I.ii), it immediately follows that iI = i _ i3
and that i4 = 0: the scattering matrix is diagonal an_ the state

of polarization, whatever it may be, is strictly maintained;

a state of nonpolarization is also maintained. This may be

predicted on the basis of considerations of symmetry: the

previously defined "scattering plane" no longer exists, and

s_nce the pa_ cicles are isotropic spheres there can be no

preferred direction in this axial system. The same reasoning
applies to scattering at I_0 °, with one difference: the scatterin_

plane is no longer defined, but by by extension, that is.
by having 0 tend toward 180 ° (see preceding figure), it may Oe

seen that the vector _ for the scattered light is in an opposite
direction to the vector _ to which the incident vibration was

adjusted (Eq. (1.13)). In this case (cf. Section 2.1.2),

SI(180) = -$2(180) , and consequently iI = i 2 = -i3, i4 remaining /2___i

zero. Any linear polarization remains unchanged, the reversal
of direction of i compensating for the sign of U (= -iUo). On

the other hand, given this change in direction, V (= iV0) retain-
ing its sign, the direction of any circular (or elliptical)

polarization is reversed. There has been research on practical

applications for these last two points: the use of polarized
light for illumination has been recommended in order to reduce

the veil due to backscattering in submarine photography (R.O.

Briggs and G.L, Hatchett, !965_ and G.D. Gilbert and J.C. Per-

nicka, 1966, to mention only the originators of this technique).
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2. Scattering by a Spherical Particle

2.1, Formulation of the Mie Theory

In the case of a spherical or optically inactive isotropic
particle, scattering is axially symmetricel, the axis being the

direction of propagation of the incident wave; this is true on
condition that the incident wave itself possesses this symmetry,

which is particularly the case if the light is natural. Any

plane containing this direction is a plane of symmetry; a plane

which additionally contains the direction in which scattering is
observed is the "scattering plane" (frequently termed "hori-

zontal" due to the experimental arrangement frequently used).

In this plane 8 denotes the angle between the directions of the

incident wave and the scattered wave; a single angular parameter

is sufficient due to the rotational symmetry. As was previously

seen (Section 1.2), the amplitudes of the components of the

electrical field following the two rectangular axes considered

in the plane of the scattered wave, one (index 1 or r) perpen-

dicular and the other (index 2 or £) parallel to the plane of

diffusion, are Sl(e) and $2(0) (S_ and $4 are zero). The cor-
responding intensity functions (wlthout magnitude, cf. Appendix l)

are obtained by finding the square of the moduli:

- :_; '=sz '_i zh" (e)i_ <e) s2i o*(e)
(2.l)

Mie theory furnishes an exact solution for these

amplitudes, which depend, in addition to angle e, on:

-- the size of the particle, or more precisely, the relative

size, by the intermediary of the parameter _ = 2wr/l,

where r is the radius of the spherical particle and 1
the wavelength in the medium surrounding the particle;

-- the relative index of refraction m, that is, the real or

complex index of the particle in relation to the index
of the medium external to the particle.

This solution is expressed in the form of convergent series:

n=o-

s1 (_,m,e) : [
n_]

n=_

n:l

2n + 1

n--"_n+l) ( &n _n (COS 81 * hn '_n (COS eli

2r_+ __ ( b "n (cos e_ ÷ a T (cos o_) .
n--'_.+i; n n

(2.2)
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4
(n, positive integer, n = i, 2, 3, ...).

The parameters _, m and e have different roles: each term

in one or another of these series combines functions depending

solely on the angle (by cos e) with functions an and bn which
themselves depend only on the size of the index (_ and m).

The final amplitude appears as the sum of the amplitudes of the

partial waves corresponding to each order n; the relative size
of these partial waves is determined by the value of the "Mie

coefficients" an and bn. For a given index m, the value of
these coefficients is higher if a is large, and as a result the

number of partial waves to be taken into account (which may be

related to those emitted by oscillating multlpoles) is greater

and the series slowly converge. Inversely, when a is sufficiently

small the coefficients may be negligible from the second order on,

and, as will be seen later, the equations are reduced to those

of the Hertzlan dipole; in other words, this limiting case is
that of Ray!eigh scattering.

2.1.1. The Functions _nZ_/_n and %n, bn

These are expressed by:

i

: _n (cos e) = _ P'n (cos 8)

_n (cos e) = ]-_ P'n (cos e) ,
(2.3)

where P' is the first derivative of the Legendre polynomial of
n

order Pn, and by:

n

bn = n <*j :,,:-_71)- _'n ':_'_"" n

(2.4)

where _n is the Ricattl-Bessel function of order n and _'n its
first derivative; Cn is the Ricatti-Hankel function of order n

and C'n its first derivative. The arguments are _ and the
product ma, as already defined.

These functions _n and _n are linked to the Bessel and
Hankel functions of order n + 1/2 by:

41n these formulas and up to Section 2.2. the r_latlve refrac-

tive index is denoted by "m" to d_stinguish it from the order "n."
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(2.5)

(2.6)

Jn and Yn are the Bessel functions of first and second type of
order n, respectively. Hn is the Hankel function of the same
order.

Introducing the Ricatti-Bessel function of the second

type Xn:

xn = - (_)I/2 Zn*I/_(x),

_n(X) is thus expressed:

_n (x) = '_n (x) ÷ i Xn (x).

(2.7)

(2.8)

/2__?_

It should be noted that the coefficients an and bn are

complex due to the presence of the function _n, even when the
argument (me) is real (nonabsorbing particles). In this fact

case, however, real particles are immediately separable from

imaginary particles, which is shown by substituting formula
(2.8) in Eqs. (2.4). It is possible to compute these series in

practice, since at each order, the values for functions an, bn,

_n and _n may be derived from the relative values for preceding
orders by using the recursive equations established for Legendre
polynomials and for Bessel functions. This is examined in

greater detail in Appendix 2, "Computation procedure and adap-

tation to computer." In this appendix it will be shown that

in the specific case examined previously, when m is real, after

separation of the real and imaginary fractions, an, llke bn may
be given in the form:

_e {an} = i, , im :a } = -___Y_k--_ ,
1 + p2/q2 ' n ! + f,/q2

since p and q are real numbers themselves, p/q may assume any
value between ±_ depending on the order n; this makes it possible

to reveal an important characteristic of the series of complex

numbers an and bn, demonstrated in a slightly different manrer
by Van de Hulst: the locus of the pattern of the an (or bn)

factors is computed simply by first assuming: X = Re{an} and

Y = Im{a n} and then by eliminating p/q between X and Y; one
obtains the equation y2 + X2 _ X = 0, the equatlon for a

circle centered on the point: Im = 0, Re = 0.5, with a radius
of 0.5.
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Figure II,I shows the p_ttern of the successive values

assumed for the first term aI when a varies from 1 to 100. the
computations being performed for an index of refraction o2 1.05.
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Fig. II.1. Values forthe complex coef-

ficient a I for a real index of refraction
of 1.05. Examples corresponding to

complex index values may be found par-
ticularly in the work of D. Deirmend-

Jian (1969); the loci of the a I images

no longer form a circle, but complex

spiral curves remaining within the
circle.

When 0 varies
from 0 to 180 ° the

functions wn and _n
operate in a manner

whose complexity
increases as the

order n is raised;
at the first orders

one has:

_i (cos e) = 1

_2 (cos e)= 3 cos e
(2.9A)

*I (cos e) = cos e

:2 (co_e) = 3 _o_ 2 e • (2.9B)

At higher orders

one begins Zo see
oscillations of

increasing number

and amplitude; the

largest amplitudes
correspond to the
values e = 0° and

0 = 180 °. Using
the recur sire

equations (2.?)

and (2.8)5 it is

easy to determine

that at any order
one has: for 0 = 0°:

and for 0 = 180 °

_n (!) = :n (I) ,' (i/::) n (n+l),

, :, (l) n-"n _'_J = _n (-i) I . (±A_) ,i (n+L)

(2.1O)

(0 qq_

I"

As will be seen below, these equations will be useful when an

attempt is made to interpret scatterin_ at the specific angles

considered, and also in computing the overall efficiency of ex-

tinction. (fhis is reduced to the overall efficiency for

5Established in Appendix 2.
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scattering in the case of nonabsorbingpartlcles: see Appendix:
"De finit ions."

2.1.2. The Intensity Functions il(e) and i2(8__)

Specific case of the angles e = 0° and 180 °

Combining Eq. (2.2) with Eq. (2.10) and then with Eq. (2.11),

one immediately sees that:

sl (o) _,s_ (o) --,i/_ \',. 12._<) (an +_n ) " (2.12)

and that :

Sl , , ,- (_])n (? ,:,_, {_j )' (180) - -L;, _i_Sj = l'g L ;, - an
(2.13)

Taking the square of the moduli in order to obtain the

intensities, it may be seen that i. = in both at
0° and at 180 °. The consequences _n re_ard to polarization

have been examined previously (Section 1.2).

Any given angle e; variations in indicatrices with size

(real m)

When _ is sufficiently small (< appro×Imately 0.2), the

series (2.2) expressing S1 and S 2 are reduced to the first term,

Wl and T 1 having the values given by (2.9A). Furthermore (cf.
Appendix 2), bl, which numerically is of the same order of magnitude

as a 2, is negligible, and once again Rayleigh scattering is

obtained, with:

il- ISll 2- Const : _ _ 12

The vertical component is constant, while the horizontal com-
ponent, varying with cos20, becomes zero for @ = 90°; the

scattered light is completely polarized. The indicatrices for

the two components and for the total intensity iT = (1/2)(i I +

+ i2) are symmetrical. When a increases all the values increase,

but asymmetry appears and becomes reinforced: there is less sc_t-
.... (3 0 _ ._ter_ at the ta"_ end of the curve (e > _0 ) than _here i_ in its initlal yart

(@ < 90 °), and the minimum iT at 90 ° disappears. On the other

hand, when a reaches the value 2.25, a new minimum iT appears
to the rear (180 ° ) and "migrates" toward the center part of

the indlcatrix, while another minimum appears in turn at 180 °

when m exceeds the value 4 (cf. the figures given in Appendix 2).

The same process is repeated to the extent that the size param-

eter increases: undulations appear _t the tail end and _ro;: more
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constricted. This is the result of taking into account

increasingly high orders of the functions _n and _, since
when a increases the series of Mie coefficients gr_dually con-

verge toward zero. Thus when a = i00, for example, the order 6
ll7 must be reached in order for an and bn to be considered zero ,

and thus the first ll7 functions _n and _n come into play; the
corresponding indicatrix has approximately 100 undulations.

Aside from these undulations, the general tendency is still

reinforcement of the asymmetry. If one no longer considers the

intensity iT, but the two components iI and i2_ their behavior
is analogous, although more complex. The rate of polarization

(i I - i2)/(i I + i 2) also oscillates between +I and -i. (The
negative values correspond to cases in which the amplitude of
horizontal vibration is greater than that of vertical

vibration. )

This description remains qualitatively valid when the in-

dex of refraction (real) varies within relatively broad limits.

However, it should be stated that if the index is extremely

close to i, the amplitude of the oscillations of iT is maximal,
and in general, the difference between the two components i I

and i2 is large, resulting in strong polarization. When the
index differs from I, the oscillations are "damped" (and the

polarization is decreased), as shown by Fig. 11.2. In
addition, for a given relative a size, the number of oscilla-

tions is higher, while the overall asymmetry is less marked.

These points will be discussed in greater detail below and

will be interpreted with the use of the computed numerical
values.

2.2. Numerical Results and Interpretation /24

Mie theory was used to calculate scatterir_ indicatricos
in several cases, enumerated below. There is a twofold reason

for this preliminary calculation. First, _ublished _._le

function tables are extremely incomplete, especially in regard

to the indices and sizes used within the framework of this study,
and second, the introduction of a large number of tabulated

data -- when available -- into the computer remains an excessively
long operation. For subsequent use, it is more efficient in the
long run to provide for the generation of useful indicatrices

in the program. In addition, it has been found indispensable to

be able to choose the step of the calculations both _n regard to
the size and index of the particles and in regard to the scatterL_

_l_ ...........
This implies the choice of a criterion: an and bn are considered

to be zero, and consequently the calculus stops at this ordcr,
when the modull of one or another of these coefficients reach

values lower than !0-7 (of. Appendix 2).
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Fig. 11.2. Scattering indicatrices

normalized to 0°: in the upper group

a = 10, and in the lower group a = 5.
In both cases, beginning at the bottom
one finds in succession indlcatrices

calculated for the following indices

of refraction: 1.02, 1.05,
1.075, 1.10, 1.15 and 1.20. The

ordinate scale is logarithmic.

Key: a. Normalization to 0°.

-- the intensity 12__55

functions il(e)

and i2(e) , and
consequently the

total intensity

function iT(e) =

= (1/2){ll(e) +

+ 12(e)} and the
rate of polariza-

tion p = {il(e) -
- i2(e)/il(@) +

+ i2(e)} have been
computed for every
2° from 0° to 180 °

(in rare cases a

step of 1° was used).

-- for each index, the

calculus was repeated
for 60 values for the

size parameter a,

that is: 0.2, (0.2),

2, (0.5), 5, (1),
20, (2), 40 (5), i00,

(I0), 140,(20), and

200, the numbers

between parentheses

indicating the a
incrementation used.

-- finally, this entire

set of operations was
repeated five times

for the following
indices of refrac-

tion: 1.02,

1.05, 1.075, 1.10 and
1.15.

-- for eac_ case, that is, for each pair of values assi_ed to
a and nc, the real and imaginary fractions of S(0), the

amplitude at 0°, and the scattering efficiency factor
Q were also computed (cf. Appendix 1 and Section 2.2.7).

For reasons given in Appendix 2 ("Adaptation and procedure

for calculation on computer"), the use of double precision (17

significant digits) is indispensable. However, it is the

7The notation n (rather than m) is again used to denote the

index of refraction. (In the future m will designate the

characteristic exponent of distribution.)
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Graphs of the functions i(0)a -4

for the indicated values for

e. Each figure corresponds to
an index of refraction. The size

parameter e ranges from 0.2
to 200. The figure dealing

with the index 1.05 has

appeared elsewhere (A. Morel,
1972a).

Key: a. Logarithmic scales
b. Index
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i

Fig. 11.6. Graphs of a single

function, but for 0 = 0° and for
various values for the index

of refraction n.

Key: a. Logarithmic scale

criterion adopted for con-

vergence of the series which,

by terminating the calculus,

determines its precision.
In the most unfavorable

cases (high values for a)

the precisior corresponds,

to six signi_ cant digits,
whatever the value of the

number (expressed as a float-

ing point decimal) might
otherwise be.

2.2.1. The Functions

!T(0)a-4

In order to present
these results in summary

form, variations _n the
functions iT(8)a-_ when
the size parameter _ varies
from 0.2 to 200 have been

plotted for each value for

the index of refraction (Fi_s.
11.3 and 11.5). Six curves are plotted in each of these figures,

corresponding to the following six values for 0:0 °, 2° , I0 °,

40 ° , 90 ° and 180 ° . For the sake of clarity, the number cf curves

has been purposely limited; however, at least schematically these

diagrams show how the indicatrices vary as the size increases.

Choice of the expression, or more precisely, the exponent

-4 affecting _ was not arbitrary. As will be seen later (Sec-

tion 2.2.8), it arises from the expression for scatterlng,.

which constitutes a limiting expression for scattering at 0°

when the particles are of sufficiently large size.

The following remarks may be made in regard to these figures:

a. For the lowest values for a, the curves corresponding

to symmetrical s_atterin< an_les 0° to 180 ° and _0 ° to 140 ° ,
coincide, while the curve for 90 ° is located below. The initial

linear part of all these curves shows a gradient of +2. Finally,
for a ]ven value for _ (0 2, for example), the values for

' increase regularly with the index (cf. Fig. 11.6, which

shows a!l the curves relative solely to _ = C, but corresponding
to various indices).

b. In regard to the angle 0°, the linear part of this

curve is extended until high values for the parameter a are

reached. Figure Ii.6 shows that this value for _ increases as
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the index of refraction approaches i. (The curves for 2° show
similar development, but to a lesser degree.)

c. After the linear part has been completed and a maximum
has been reached, all the curves for 0° show oscillaticns whose
amplitude decreases as _ increases. Chese oscillations occur
around a fixed limiting value, which is 0.25.

d. The curves for angles 0 other than 0° also reach a
maximum, beyond which the decrease is accompanied by complex
oscillations. _ This maximum appears for values for _ which are
greater as e is smaller. Comparison of these figures shows that
the positions of the respective maximums are virtually not
influenced by the value of the index; thus in contrast to the
situation at 0°, the corresponding value for _ depends only on
the angle and not on the index.

e. Ignoring these oscillations, the mean gradient of these
curves (8 W 0) is established approximately around -2.3 for the
indices 1.02, 1.05 and 1.075, and around -2 for the higher
indices 1.10 and 1.15.

f. Finally, the curves for 0 : 180° always comprise more
or less of an exception: the oscillations are more erratic, and
to the degree that it is still possible to speak of a mean
gradient, this gradient is small or zero, especially when the
index is high.

These remarks are made in view of the numerical results
obtained from the Mie mathematical formulation; these find-
ings have no interpretive value in themselves. _ie theory
furnishes a rigorous solution and covers all cases from that
of the extremely small particles falling within the province
of Rayleigh theory to that of particles of sufficiently
large size to be dealt with by the classical theories of geo-
metrical optics and scattering. These theories, which actually
are strictly applicable only to the limits and can be used
only in an approximate manner in the intermediate range, are
nevertheless able to furnish the elements of interpretaticn
more easily and to give the results of computation a clearer
physical significance.

_The curves are plotted by joining the calculated points in
linear fashion. The intervals at which a is calculated make
it possible to show the behavior of the functions only in an
approximate manner, without describing this kehavicr In detail.



Thus Rayleigh theory acounts for the first of the
above remarks, while _oints b and d can be elucidated by
Rayleigh-Gans theory._ The other points -- point e only in
part -- may be satisfactorily explained by reference to scat-
tering or geometrical optics (reflection, refraction). These
various interpretations will be examined in turn; their use-
fulness lies in the possibilities they offer for predicting
the nature of the indicatrices, for a given particle as well as
for a system of polydispersed particles.

/26

2.2.2. RaFleish Scattering Range

It has previously been seen (2.1.2) that in the case of

low values for the parameter a (0.2, for example), the Mie

formulas yielding il(8 ) and i2(0) are reduced to simple
equations revealing an angular dependence which is that of

Rayleigh scattering. Rayleigh's radiating dipole theory giw_s

the following expression for these components, il and i2:

_] = k 6 p2 i

related to physical magnitudes which are the wave number k =

= 2w/_, and the polarizability p of the particle I0, having the
dimensions L3. If the particle is an isotropic sphere with

radius r, volume V and index of refraction n, the polarizability
is furnished by the equation given by Lorenz-Lorentz:

3 r2-1
P-- V

_ n2+2

or
2 1

1_ - r3 ;
n2÷?

replacing kr with a and assuming (n2-1)/(n2+2) = A, this becomes:

9An extension of Rayleigh theory proper, made by

Rayleigh hlmse!f at _ *_ .... I' _L,_ ex__:.a.rided by Gans (i925)
(of. H.C. Van de Hulst, 1957).

10polarizability is the induced _oment _ when the electric field

E is at unit strength. Vectors p and E are parallel for an

isotropic dielectric, and in this case p is a scalar; in the
more general case it is a tensor, _ and _ having different
directions.
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(2.15)

Within the range of applicabillt_ of the Rayleigh theory

(a << 1), the quantities iT(e)_-4 represented graphically are

thus expressed by:

il a6 A2 6 A2= , i2 = S cos 2 t

Given as a function of a and in logarithmic coordinates, these

quantities are represented by lines with a gradient +2, no

matter what values are attributed to e. The respective posi-

tions of these lines obviously translate the symmetry of the

scattering indicatrix in relation to 90 ° (cf. Remark a).

Finally, the index of refraction comes into play to dete_ne

the magnitude of the phenomeon through A 2. For a given relative

size a and for a given angle (for example e = 0° which is the
case illustrated by Fig. 11.6), the scattered intensity is

proportional to A2. If one assumes the index to be relatively

close to I, A is expressed approximately by:

A = (2/3)(n - l) (2.16)

i and i' being the intensities scattered by particles of the same

size and the index being n and n' respectively• the result is:

i :, In- 2 (2.17)
_' 2 [n'-i J

A 0

The size of the intensity functions therefore increases as the

index of re_'action becomes farther from I. As Fig. II.6 shows•

for example, the intensities are multiplied by 25 when the
index of refraction changes from 1.02 to 1.10.

2.2.3. Rayleigh-Gans Approximation

The applicability c_ndi_ion for the Rayleigh theory,

_=t2-_',''l_ : , (2.18)

is based on the following physical hypothesis: the particle must

be assumed to be small enough so that the electric field applied
is of uniform intensity. To make a simple extension of this

theory to a larger particle and to apply it to each part of

this particle considered as an independent dipole, it must be
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assumed that at least on a first approximation, the electric

field remains the same for all the constituent parts of the

particle. In other words, the amp)itude and phase of the wave

reaching a given part must not be changed ir _ny appreciable

manner by the presence of the other parts. This implies that
the scattered energy is low and the phase retardation is

negligible, which is expressed by the condition:

X corresponds to the w_velength within the medium outside the

particle and n to the relative index of the particle in relation

to this medium. (The expression corresponds to a maximum phase

shift, that is, to that of the radius passing diametrically

through the particle.) This condition is generally written:

p << 1 (2.19)

the parameter p, combining the relative index and size, being

assumed equal to 2aln-I I. This condition can obviously be

met for high a values, provided that n is very close to i.

Scatterin_ at 0°

In general, waves scattered by the constituent parts of the

particle are not merely additive, since they interfere. However,

according to the initia_ hypothesis (stating that the material

presence of the particle does not m ]ify the condition of the
wave), the scattered waves are nece_aril_ in phase in the

specific direction 0°: the prolongation of the path of the

incident wave is exactly compensated by a decrease in the

length of the scattered wave and vice versa, no matter what
the spatial position of the various components. In'this par-

ticular case, where the amplitudes are strictly additive, the

expression for intensity given by Ra_lei_h theor_ ret_ns

its applicability, and although a is smaller, Eqs. (2.15) remain:

iT(0 °) = aOA2. This furnishes an explanation for Remark b.
In reality this remark is incomplete, since the linearity on

log-log graphs is extended beyond the range of applicability,

while the condition p < 1 is no longer fulfilled. This pro-

longation provides the basis for the term given by Penndorf

(1960), the "extended Rayleigh region." As will be seen later

(2.2), the limit of this zone is fixed by the value 4.09 for

parameter p; the corresponding value for p thus increases as

the index approaches I.

/2__Z
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General Case

For angles other than 0°, geometric compensation for path

differences no longer applies; consequently the amplitude of

the scattered wave is obtained by multiplying the amplitude
determined by means of Rayleigh theory by a factor F(e)

representing the interferences and dependent on e (or on two

angles e and $ if the phenomenon considered is not one of
revolution.

i] (e) + i2 (ej = (1/2) 6 A 2 "iT (e) - (i ÷cos_ o) F (o) . (2.20)
2

F(8) is a function whose value is i for e = 0°, and less than i

for any other angle. This function is calculated by integration

extended to the entire particle; the differential component

consists of elemental "slices" representing constant path differ-

ences. The integral may be expressed by the usual functions in

the case of particles with simple geometric shapes; with spherical
particles one obtains:

_ <o)= (o (b)) _, (2.21)

with U = 2 e sin 8 /2, and

G (U)= _.2---!_:/2 J3/2 :u)
2 J"

u3_ ' (2.22)

where J3/2(U) is a Bessel function of the first type of order
3/2. This function individually multiplies the two components

iI and 12; as a result, the total polarization at 8 = 90 °

characteri_'tic of Rayleigh scattering is retained. The scattering
indicatrix becomes asymmetrical due to a decrease in the values

at large angles. The effect becomes more appreciable as the

size _ increases. When the function J_/2 reaches zero for the
first time, that is, when the argument-U reaches the value 4.49,
a minimum appears which corresponds to extinction due to inter-

ference: for e = 2.25 it appears at 180 ° . As e increases this

minimum progresses toward the small angles, while a second
minimum corresponding to a second zero appears in turn (when

= 3.86), and so on. Successive minimums arise at the tail end

and the indicatrix forms a system of increasingly constricted

oscillations, while the _redom_ne_ce of scatterin_ in the forwa_] cart

(at 0° and neighboring angles) becomes continually more marked.
The "scattering pattern" resembles the Fraunhofer diffraction

pattern, but the radii of the angles of the rings are different.

As the particle size increases, the one pattern gradually is
transformed into the other; in British literature this transition

zone is termed the zone of "anomalous diffraction." In the final

47

i



analysis, the shape of the indicatri_ determined by the function

G(U) is therefore independent of the value of the refractive

index (given that n-i remains low), since the argument U depends

only on a and a. Af UI, U2 ... denote the successive values
for the argument at which the function J3/2 becomes zero, the

equations:

2 _ sin _/2 = uI (=4.49) (2.23)
: u2 (= 7.73)

represent the geometric loci _f successive minimums in the

plane (a, e). Curves representing the first six minimums are
shown in Fig. 11.7. As an examp!t: it may be seen on this

figure that if a = 5, the scatterin_ i:_:dicatrix should have
two minimums at 55 ° and ii0 ° and the beginni_g of a third at

180°; if a = I0, there are five minimums and t_e beginning of
a sixth.

Figure 11.2 shows that this is indeed the case for the
lewest value for the index (1.02), but as the index increases,

the system of minimums progresses toward small angles.

Returning to Remark d, curves corresponding to the various

angles _ become detached from the curve relative to 0°, this
detachment being p_oduced by the appearance of the first

minimum for the angle 0 under consideration (first equation 2.23):

the smaller the angle e, the greater will be the corresponding

value for a, and this will occur independent of the index, since

it does not figure in the equation. The table below (first line)
shows the theoretical values of a for which this minimum appears

at the angles _ indicated:

I 3 8 _ _ 9_ 11,9 22.0 !SS i

2.2.4. Approximation by Diffraction Theory

It should be noted that when the minimum occurs at i0 °,

that is, when _ : 25.8, the value of 0 is i if the index is

1.02, but 0 reaches 5 if n = i.i0. In other words, normally

there is no longer justification for use of the Eayleigh-Gans

theory at this point, and still less for an angle of 2°. For

these high magnitudes, diffraction may furnish an approximation

for calculation of the angular distribution of intensities,

which for a circular diffraction opening is expressed by:

/28
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Fig. 11.7. Angular position of the first six minimums

according to Rayleigh-Gans theory (Eqs. (2.23));
the dotted line represents the first two diffraction

minimums (see Eqs. (2.24) below).

2 J 1 _,J

_" (o)= . (2.24)
U

with U = _sin 0. The Besse! function Jl(U) first reaches zero

when the argument U reaches the value 3]83. This makes it

possible to compute the values which should be assumed by the

size parameter a so that the radius of the angle of the first

dark ring has the values 2° , i0 ° ...; the second line in the
above table shows these values. This approximation by dif-

fraction is more appropriate than use of Rayleigh-Gans

theory to explain t_ sha_e of the ind_catr!x in the

small an_le range_ _, and also for other angles if the index
differs markedly fr m i. This particularly explains the

lithe diffraction minimum occurs at _ = 109 for all the curves

corresponding to 2° given in Figs. II.3 through II.5. However,

other minimums have appeared earlier (except when n = 1.02):

these correspond to the minimums observed at 0° or, as will be

see_l later, to those of the efficiency Q. This is interpreted
as the result of favorable or unfavorable interference between

the wave passing through the particle ("refracted" wave) and

the diffracted wave forming the central lobe.
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increased number and constriction of the oscillations of the

indlcatrix as the index increases (Fig. II.2), as can be pre-

dicted on the basis of Fig. Ii.7.

In _onclusion it should be noted, however, that the position

of the first minimum for a given angle e corresponds to values

for _ given in one or the other list, depending on the approxi-

mation which can be used; but these values are close enough to
accour_t for Remark d.

2.2.5. Role of Refraction and Reflection

Independently of diffraction, the geometrical optics

approach implies taking into consideration reflection and refrac-

tion: the interaction of these three phenomena and the possible

interferences among the three wave types combine to form scat-

tering. Since the function F'(0) can assume the value zero, the

minimums would be total e×_inctiens if the light scattered by

the interplay of reflections and refractions were not added to

the scattered light. The magnitude of the energy scattere_

in this manner is governed by the value of the Fresnel reflection
coefficients and thus increases as a function of the refractive-

ness of the particle: the minimums are thus attenuated (cf.

Fig. 11.2) and the general asymmetry is not so pronounced (Figs.

11.3 to 11.5 and Remark e), but on the other hand backscatterin_

(for angles in the vicinity of 180 ° ) is accentuated (Remark f).
It should be noted that the total extinction of Rayle_gh-

Gans theory, which brings F(6) to zero, is no longer found in

this case: in this range the minimums are also extremely marked

if the index is close to l, and are attenuated as it departs

from i. The preceding physical interpretation can be used

only by extension: the size of the particle relative to the
wavelength no longer permits strict use of the terms "reflection"
and "refraction."

Finally, application of the laws of geometrical optics has

made it possible to explain the phenomenon of the rainbow (it

5s generally acknowledged that Descartes himself has given a
correct interpretation of this phenomenon), which is due to a

concentration of energy following an internal reflection (or
two internal reflections for the "second" rainbow) within the

droplet. The corresponding angle of emergence, which is that

of minimum deviation for the first rainbow, is 138 ° for water
droplets. The same calculation, repeated with tae use of other

index values, shows that the "rainbow" moves toward lower angles

e as the index approaches i (Fig. 11.8). The figures given in
Appendix 2 show that a stable maximum is quite apparent (toward

75 ° , for an index of 1.075) _ben the size is sufficiently large.
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Fig. 11.8. Angular position of

"rainbow" depending on the
index of refraction.

Key: a. First "rainbow"
b. Index n

Other indicatrices

forparticle systems will

reveal this phenomenon very

clearly, within the pre-

dicted range of angles,

taking into account the
value of the index (see

Fig. 11.17 and in Part 3,

Figs. 111.2, 111.7 and
III.12).

2.2.6. General Remarks on /29

the Asymmetry of
the Indicatrlx

In summary, for the

reasons given previously,
functions i(8)_ -4 each
attain a maximum for an

value which in practice

is fixed, no matter what

the value of the index may

be. On the other hand,

the maximum reached by the

curves corresponding to
0° occurs for an increasing value as the index approaches !.
As a result, the difference between the curve for 0° and the

other curves, which determines the overall asymmetry, becomes

greater as the index approaches I. As an example, when a = 200

the indicatrlx covers approximately eight orders of magnitude
if n = 1.02, and only five or six when n = 1.15 (cf. Figs. II.3

and 11.5). This observation will take on its full importance

when an attempt is made to predict the results of weighted
addition of indicatrices.

2.2.7. Total Scattering Coefficient. Efficiency Factcr

The scatterin_ efficiency factor © is deflnel as the
sc

ratio of the efflective scatterin_ cress secti%n to the
geometrical cross section of the particle (_r _ for a spherical
particle of radius r), or in other words, as the ratio of the

total _cattered flux to the incident flux on the particle, that
is, on a section of area nr 2 if the particle is spherical.

These definitions are given with greater precision in Appendix i.

f_ efficiency factor for attenuation is alsc defined; this

differs from the preceding only if the particle is absorbing,
in which case one has:

Qattenuation = Qabsorption + Qscattering

U, 7
j_
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This a_tenuation factor is linked to the amplitude S(O)

by an equation developed w_-_],,_,.,_,_._by Van de Hulst (1949, 1957)
(and known as the "extinction formula"):

4

Qatt._ _--_R_ {s (o)} , (2.25)

with SI(O) = $2(0) , which with reference to Eq. (2.12) is

expressed as:

n_
2

Qatt. = --_ I (2 n+l) Re lan ÷ bn] • (2. 26)
n=l

The integral, extended to 4n steradians, furnishing the scatter-

ing efficiency factor is (cf. Appendix I):

= I I[ (i_(e,,).i2(e,_)) _
Q SC 2 _ a2 4_

or, il ohe phenomenon is one of revolution:

1
Q_c =--_ fQ (iI (e) + i2 (e)) si_e de . (2.27)

Debye (1909) has shown that, related to series, this integral is

ultimately reduced to (cf. Van de Hulst, p. 128):

2 _ (2_.+_.) (1%12+ 1%12) (2 28)QSC _"-_ ' "

lanl 2, Ibnl 2
ficients.

being the squares of the moduli of the Mie coef-

When the index of refraction is real, it has been noted

(Fig. If.l) that images in the complex plane of numbers an and

bn are on a circle with radius 1/2. Geometrically it may be

seen that for any value for an or bn, one has:

= 7_ ' or l_l 2

The real part of an is numerically equal to the square of

its modulus. Eqations (2.26) and (2.28) are thus mathematically

identical, which should necessarily be the case since in the
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absence off absorption, the attenuation is duc only to scattering.
The following discussion will not be concerne_ with nonabsorblng
particles, _]d the factor Qsc, equal to Qatt, will simply be
noted Q.

After Eq. (2.25), variations in this factor with the size
parameter _ may^be studied on the basis of development of the
funetlon S(0)_ -z in the complex plane. This quantity has been
computed for all the sizes and indices mentioned so far. As an
example, as Fig. II.9 shows, the function S(0)a -2 is represented
in the complex plane by a spiral turning around a point Im = 0,

Re = 0.5, as the current parameter _ increases. Contrary to the

example given by Van de Hulst relative to the index 1.33 (Van

de Hulst, 1957, P. 176), the spiral is more regular, which is

characteristic of indices close to I; undulations, retro-

gressions and ultimately retrograde loops occur for high

values when the index begins to differ sharply from i. The

"speed" at which the spiral progresses depends on the index:

for example, when _ increases from 0.2 to 200, a single turn

is described if n = 1.02, and five turns if n = 1.1O. In

actuality, the angular speeds in the various cases are equal if,

rather than _, the current parameter is assumed to be p = 2_(n-l).

(The values for p for various angles of rotation are indicated

in the figure.) Factor Q is equal to four times the real part
of function S(0)_-2: it reaches an initial maximum when p is

close to 4, then oscillates around the value 2, the amplitude

of the oscillati@_ decreasing as the spirals tighten. The

limiting value 2±_ is that furnished by diffraction (see beloW),l 3
whose laws are applicable if the particle is sufficiently large.

12The convergence of series (2.28) and (2.26) toward 2 does

not appear to have been proven mathematically.

131t may be recalled that the fact that a particle scatters twice

as much energy as it is able to intercept, due to its geometrical
cross section, is known as the "extinction paradox" (or "Babinet

paradox"). This paradox is quite apparent, and arises from the

initial hypothesis stating that the distance of observation is

much larger than the size of the particle. Van de Hulst pla2-
fully illustrates this phenomenon by taking the example of a

flowerpot on a window ledge projecting a shadow, whose coefficient

is equal to I, while a meteorite of the same size intercepting
the light emitted by a star has a coefficient of 2.
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2.2.8. Efficiency Factor and Intensity at 0°.
(Diffraction)

Limitin$ Values

The intensity function is obtained by takin 5 the square of
the modulus of the amplitude (2.1); since S(0)_-2 tends toward
0.5 as _ increases, i(O)_ -* will tend toward 0.25. This was

the subject of Remark c, which may be interpreted in a simple

manner: the intensity diffracted in direction 0° (central spot)
is proportional to the square of the surface of the diffracting

opening and the amplitudes for the diffracted wave in any given
dlrectlon):

2 2 Jl (s sin e)Q

S 1 (O) " S2 (%) " "2 _ sin @

When O tends toward 0, )JI(U /U tends toward 1/2 and i(0) =
= Is(o)[2 tends toward a4/4. Before coz_verging toward their

respective limits 0.25 and 2, the oscillations of functlons
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i(Q)a -4 = ,, -4iS(Q)12_ and Q = are concomitant; theRe{S(0) }a-2
maximums and minimums of the two functions occur at the same
values, which actually correspond to fixed values for p,
approximately marked on the spiral. More precisely (as com-
puted with Eq. (2.29) below, which is applicable if the index
is close to I), these values are:

= 4.09 first maximum
= 10.79 second maximum

= 7.63 first maximum
= 14.00 second maximum

2.2.9. Van de Hulst Approximatio_

Van de Hulst has shown (1946, 1947) that the efficiency

factor may be expressed simply as a function of the parameter

by:

Q_2-4D-lsinm+4p-2(l'c°s_)'-- (2.29)

when the index of refraction is very close to 1 (I ± E); in fact,

even when the index differs sharply from l, this expression
remains valid in most cases. Figure lI.10 shows that the

curve obtained from Eq. (2.29) constitutes a satisfactory

approximation, even when the index is 1.15, the representative

points being computed by means of the exact equation (2.26).

When n is high, several systems of small oscillations correspond-

ing to undulations or loops in the spiral are superimposed over
the periodic oscillations 2w. This expression for the efficiency

factor Q is a valid approximation throughout the Nie range, since

p is any value, the sole condition being that In-l] is small.

At the limit, when p increases Q tends sharply toward 2. Inverse-

ly, when p tends toward zero, that is, when the size of the
particle decreases, expansion of Eq. (2.29) yields:

Q_o = (i/2) 2 (:/?([) c . ... (2.30)

As will be seen briefly in the following discussion, this

formula coincides with that resulting from the Rayleigh-Gans

theory, which also assumes n to be close to i; but it differs
from the corresponding formula given by the Rayleigh thecry,
where the more restrictive condition _ << I must be met.

2.2.10. Efficiency Factor in the Rayleigh and Rayleigh-Gans
Range s

By combining Eq. (2.27) with formulas (2.15) giving the
intensity functions for Rayleigh s_attering, one obtains:

/3__A
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Fig. II.i0. Efficiency coefficient Q adapted to a

logarithmic scale as a function of the parameter
p = 2a(n - 1), for two refraction values.

1 /,[ 6 A 2Q -_ _ (i *_'_ , . (2.31)

the integral defined by the function @ has a value of 8/3 and thus:

Q=8/3_ /? , (2.32)

in this equation the X-4 l_w again applies, but it is in

contradiction with the ena = law supplied by expansion (2.30).

In cases where n is assumed to be close to i, the Lorentz term

A is replaced by (2/3)(n - i), in conformity with Eq. (2.16),
and the result is:

_L :...... :- (2.33)

In the range of applicability of the Rayleigh-Gans approxi-

mation, the intensity functions are multiplied by the factor
F(e) = 32(2asin_/2), which thus occurs in the integral. A

being replaced by its previous approximate expression, one may
write:
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Fig. II.11. Efficiency coefficient
Q in a range of low 0 values (loga-

rithmic scales) for various indices.

This time the value of

the integral defined

depends on _: if

tends toward zero, the

result is once again

the preceding equation

(2.33), valid when n

is close to I; on the

other hand, if _ is

large, it has been
shown that the value

for the integral is
(9/2)_ -2, and the

result is thus: Q :

= 2(n - 1)a 2, which

closely corresponds to

the limiting equation
(2.30) of the Van de

Hulst approximation.

To draw a practical

conclusion, the differ-
ence between the exact

values for Q calculated

by means of Eq. (2.28)

and the approximate

values calculated by

Eq. (2.29) is generally

very small, as has been
stated, except when p

is small. With equal

values for p, it is obviously all the more important that the
difference between (n - l) and 0 is greater. Figure II.ll

shows that for p values less than 0.5 there is reason to use

the exact equation (2.28).

3. Scattering by a System of Polydispersed Particles

The term "polydispersed system" is taken in its generally

understood sense, denoting a system of particles of the same

shape (spherical in the present case) and the same nature (and

thus the same index), differing from each other only in size.
Their number varies with their size, according to a law of

distribution.

First (Section 3.1) there will be a d_scus_icn ef the

formulas permitting calculation of the scattering propel'ties

of a single system. Second, the predictions which may be made

j
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concerning the results of the computations will be examined

(Section 3.2), for cases in which the distribution is assumed
to follow a power law. This leads to a consideration

of the significance of the computations, taking into account
the fact that these must be carried out with the assumption

of mathematical limits whose physical reality is not readily

apparent. Finally, by comparison with exponential laws, other

types of distribution are considered.

3.1. Calculation of Scattering Properties

The particle population is characterized by a distribution
function established with reference to a geometrical parameter

characterizing the size: the following discussion will use the

parameter a, that is, the relative size 2_r/l which comes into

play in Scattering calculations and preserves their generality.

(In applications, the radii of the presumed spherical particles

being fixed, the change in wavelength is translated by an

inversely proportional variation in a.) The distribution func-

tion F(a) corresponds to a frequency or probability of occurrence:

if the entire population includes N particles with sizes ranging

from zero to infinity (or from a minimum size am to a maximum

size aM ), the quantity:
e2

i f F(_)do
a I

is the relative probability of occurrence of particles whose

size parameter is between aI and a2; the function F(e) is
assumed to be continuous and integrable within the interval

0, _ or am, aM.

The additivity of the intensities scattered by randomly

distributed particles simplifies computation from a formal

standpoint; it is understood that in practice the integrations

predicted below are replaced by summations, the size incremen-
tation da being that ruled by the preparatory computations for
individual indic_trices (cf. Section 2.2, Part 2).

3.1.1. Scatterin_ Indicatrix for a Given Number of Particles

For each angle, the intensity functions ii(0) and i2(e)

for the particle system are given by the integral of the

products il(e, _)F(a) and i2(_, a)F(a) Normalizing to the
integral of the function F(a) between the same limits renders

the calculations independent of the total number of particles;

otherwise, they would depend both on the distribution and on

the limits adopted. From this it beccmes possible to compute:
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i I (e) :

_M

a
m

d,a

' (3.1)

m

and i2(8) in the same way. The total intensity function iT(8) =

= (I/2)[ii(8) + i2(8)] and the rate of polarization [ii(8 )-

- i2(8)]/[Ii(8) + i2(8)] are determined from these equations.
For application, if N is the total number of particles in a

unit volume, the volume scatterin_ function is obtained
simply by computing (cf. Appendix i, "Definitions"):

_2

The use of a given value for _ influences the limits am and aM

to be used.

3.1.2. Mean Efficiency Factor

This is defined for a system of particles as the ratio of
the sum of the effective cross sections to the sum of the

areas of the geometric cross sections. For the spherical

particles considered, using the parameter _, one has:

f_ F(:,) _ _. (a) _:_

m

aM 2
f I.'(_) _ d_,

O.m

(3.2)

/3__/3

It is also possible to use the parameter p = 2e(n - i), which

simultaneously combines relative size and index. This is to

advantage when the index is fairly close to i, since in this
case the Van de Hulst formula (2.29) will be applicable; this

equation is simple enough that the integral in the numerator
of Eq. (3.2) may be calculated numerically with a very small

step P.

3.1.3. Normalized Indicatrix

In the final analysis, in comparing the results obtained

by varying the law of distribution and its limits, it is less

practical to fix the number of particles (as in Eq. (3.1)) as

it is to fix the total scattering coefficient. This case

corresponds to examination of sets of particles whose number
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and distribution vary, but which show the same overall scatter-
ing effect; in the present case, unitary scattering. The normalized
scattering coefficients (cf. Appendix l, "Definitions") are
calculated by:

;_M _(_) i I (e._) da
1 m

_i (e)_ I_ F(_)Q(_) 2 a_ (3.3)
S
m

D

and for _2(e) by the corresponding equation; B(e) is then
calculated by means of the sum _l(e) + B2(e) divided by 2.
Computation of Q being performed s_multaneously (3.1.2), the

inverse of Q furnishes the total area of the geometric cross

sections of the particles necessary to yield this total

unitary scatteriny. For example, if Q = 0.5, the total

particle cross sections present within a volume of
I m3 must be 2 m _ in order for the scattering coefficient b
to be i m-I.

3.2. Predictions of Results of Computation

These are possible based on the following two points:

-- variations in the shape of the Mie indicatrix

for increasing sizes are replotted in geDeral form by
means of graphs of the functions i(_)a-_; the previous

observations on the numerous gradients of the curves

for various angles permit such predictions.

-- particle distribution according to size is assumed to
follow a Jun_e law ±-' exu_essed by a power function:

F(a) = constant'a -m.

Convergence Conditions: Influence of the Upper Limit on
the Indicatrix

Taking into account the form given at F(a), the iT_e)a -4
functions already represented exactly correspond to a-_

14
It will be seen later that functions of this type satisfac-

torily correspond to actually observed marine particle distribu-

tions. In any cas_, more complex d_stributions can always be

broken down and approximated by such forms within e_ch r_n_e, at
least theoretically.
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distrioutions, and integration of these functions makes use of the
numerator contained in Eq. (3.1) or (3.3). With the exception
of normalization, it furnishes the _ndicatrix for the population
considered (characterized by the a-_ law). it can immediately
be seen that the integrals for the various angles will all con-
verge, since the mean gradients for the curves are close to
-2.3 (cf. Section 2.2.1, e), with the exception of the integral
corresponding to the angle 0°, for which the mean gradient for
the curve is zero. To put it another way, beyond a given limit,
the consideration of increasingly large particles will not
change the form of the resulting indlcatrix except for the
angle 0° and angles in the immediate vicinity, where the inten-
sity will continue to increase. This phenomenon is shown by
Fig. III.2 (Part 3), where the upper limit is increased from 50
to 200 without any appreciable change in the indicatrix, except
at 0°, and also at approximately !75 to 180°. This is no longer
the case if the upper limit becomes less than 50 (A. Morel, 1972a,
Fig. 2).

In general, functions i(@) increase with the size
according to a* + p laws, where p is the mean gradient read on
the graphs (log-log scale) such as II.3; by way of review (cf.
Section 2.2.1), these gradients have the values:

p = +2

p = 0

p -_ -2.3
(or -2)

for any given 0, if a is small;
for e = 0°, even when a is not small, on condi-

tion that p = 2a(n - i) is less than 4;
for e = 0° when _ is large (p is greater than 4);

for 9 _ 0° when _ is large;

-2 _ p _ i for e = 180° , when a is large; the value of the
gradient actually depends on the index (more-
over, it is difficult to estimate an average
value).

Functions F(a)im(a, 8) are 4+p-m functions if -m is the
exponent of distribution; the integrals to be computed are
thus functions with the exponent 5 + P - m. These integrals
will converge absolutely if:

5 + p-m _ 0 (3.4)

inequality to zero does not result in convergence, the integral
being a logarithm.

If the progressive values for the integrals:

(3.5)

/34
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are given as a function of a for various angles (Fig. 11.12),
one finds that:

a. When a is small, no matter what the value for e may be,
all the curves increase by a gradient 15 whose value is 7 - m
(that is, 3.5 and 2, respectively, for the two cases presented);

b. For a values whose increase is proportionate to the
decrease in e (that is for a va!ues corresponding to themaximum of the curves i_)a -4, cf. Sections 2.2.1 d and 2.2.3),
the integrals converge asymptotically and the curves show an
asymptotic plateau (when condition (3.4) is met);

c. For the angle 0°, where _ : 0, there is no plateau if

m > 5; otherwise, the integral wiil continue to increase with

the gradient 5 - m (that is, a gradient equal to 1.5 for the

higher figure and a gradient tending toward zero for the lower

figure -- a branch of a logarithmic curve -- constituting a

limiting case);

d. For the angle 180 ° the variatiens are more complex due

precisely to the fact that the mean gradient p has a tendency to

disappear as a increases (increasingly as the index becomes

higher, which increases the reflection; cf. Section 2.2.5);

in general, the partial integral resumes its increase afterla

plateau.

In con_]_sion, since the difference between the various

plateaus characterizes the resulting indicatrix, the following
predictions may be made:

-- if every curve has a plateau (when m < 5), the difference

between the final values no icnger changes and thus the

indicatrix is no longer modified if the upper limit of
integration continues te be raised.

-- if 2.7 < m < 5 the conclusion remains the same, except

in regard to the angle 0°; in other words, considera-

tion of increasingly large particles does not change the

s_peof the indicatrix except at extremely small angles
(and also toward 180°), where the increase continues.

14The slight ben_s which may be detected in the ascending

curves (in the neighborhood of a = 2, for example) are artifacts

due to the change in step (da) in computing the integral, slnce

this step is determined by tle preliminary calculations fcr

the indicatrices (of. Section 2.2).
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Fig. 11.12. Progressive values for

integrals as a fuLctlon of the upper

limit. The distribution exponent

has the values -3.5 and -5, respec-

tively, the index of refraction

remaining 1.05 in both cases. The
lower limit for the calculations is

0.2, but the curves are plotted after

the first "ntegration step, i.e.,

beginning cta = 0.4. The upper limit

Is 200. [Key on following page.]

if m < 2.7 there /35
is no mathematical

limit, and the cal-
culations are

meaningful only if

there is a physically
real limit.

3.2.2. Role of Small
Particles: Influ-

ence of the

Lower Size Limit

on the Indicatrix

It has just been
seen that the calcula-
tions retain their

significance within
certain conditions

which have been stipu-

lated, even though the
upper limit has been

set arbitrarily. An

analogous problem is

presented with regard
to the lower size limit.

This quantity is

physically unknown and,

here again, the lower
limit used in the cal-

culations can only be

arbitrary. It is
necessary to predict
the influence on the

indlcatrix of

failure to take

extremely small part-
icles into consideration.

Theoretically the cal-

culations may be performed

beginning at a hypothetical
lower limit constituted

by particles of "zero"

size. In an analysis of
the effect of truncationl5

15
Or the effect of

_sevaiuaticn of the d _-

tribution laws to be used

for small particles whose

[continued]
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Key to Fig. 11.12:

a. Logarithmic scales
b. Exponent
c. Index

if integration is performed beginning with a finite limit which
is not zero, two cases should be distinguished:

Case in Which the Particles Overlooked Belong to the Rayleigh Range

In th_s case integration is performed with a

lower limit am = e, which at the most is equal to i. An unfavor-

able hypothesis consists in assuming that the unknown particles
continue to be distributed according to the same a-m law; this

hypothesls leads to continually increasing numbers of particles
(and to an infinite number for size "zero"). The same scat-

tering law is applied to all these particles (cf. Section 2.2.2),
that is:

i I (8) = a6 A2 cos I Bli (e) 2

For each value of angle 0, over the range considered -- for

iT = i/2(i I + i2) -- the integration is written:

£

1/2 I ^2 6-_ (i ÷ co._20) d_, . (3.6)
0

This system of particles thus shows a Rayleigh indicatrix,

expressed by:

i £7-m
iT (e) = i/2 A 2 ( i ÷ cos 2 e) 7 - m (3.7)

that is, an indicatrix of fiGite size, on condition that the

following inequality is metl6:

7 -m > o (3.8)

15(c°nt'd)presence is only probable b_,,extensien, since they
_re not o_served.

16Thls is obviously the reverse condition to tha_ expressed by

Eq. (3.4,, with p = 2, the value for the gradient within the
Rayleigh range.
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otherwise, one obtains iT = _. In other words, if there is
truncation in the first case, the quantities iT(0) overlooked
are finite and the resultant error can be computed. The error
is infinite in the second case and the calculations are

meaningful only if a known physical limit which is not zero
exists.

In the first case, the neglected terms vary with the angle

according to the Rayleigh law (that is, in a ratio of i to 2).

If these are compared to the extremely asymmetrical indicatrix

obtained when the upper limit is 200, it may be seen that the

possible error is maximum for angles equal to or greater than
90 °. As a relative value, this error is obtained by forming

the ratio of the integrals between 0 and 0.2 and between 0.2

and 200 respectively. To refer again to the two examples
illustrated by Fig. II.12, the error resulting from truncation

(at 0.2) is less than 0.1% if the value of the exponent is
-3.5, and on the order of I% if this value is -5 (for angles

of 90 °, 140 ° and 180°; the erro_ is obviously less at smaller

angles). This order of size remains valid in other cases.

Appendix 2 gives the values for various indices and for
exponents varying from -3 to -5, computed by means of Eq. (3.7).

These values are aiwayo negligible compared to those furnished

by integration within the size interval 0.2 to 200.

In conclusion, the lower limit of this interval may be
considered to be fixed at a sufficiertly low value. The

indicatrix thus obtained is significant, since particles with

a size less than this value no longer have any appreciable
_n____uence (provided that their law of distribution meets con-

dition (3.8)).

Case in Which Truncation Occurs for Greater ok_zes

Here the effect may be directly predicted from <raFhs

such as 11.12. In particular, if the value of the lower limit

is such that the curve relative to a given angle 0 has begun to
form a olateau, the effect will be considerable. For this angle

the overlooked quantities may thus become greater than the

quantities taken into account in integration, and the final
value (when a = 200) is consecutively decreased. Since plateaus

occur for _ values which become greater as e becomes smaller
(of. Section 3.2.1, b), this decrease first affects the value

at an angle of 180 ° , then that at 140 ° , etc. The asymmetry of

the final indicatrix is reinforced as the lower limit am is
raised:

if %_ = : in relation to the values previously obtained

with em = 0.2, it appears that the values at 90 ° ,
140 ° and 180 ° are decreased from !0 to 20%.
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if am = 2, the decreases at the same angles change from
approximately 30 to 50%, while at 40 ° there

appears a slight difference (-10%).

if am = 10,the effect is still marked and in addition extends

to a broader range of angles; a notable difference

appears beginning with an angle of 20 ° .

Figure II.13 reveals this reinforcement of the overall

asymmetry due to a decrease in the values at large angles, the

values at small angles (0° and 2° ) remaining unaffected. This

figure repeats the upper part of Fig. II.12; in addition, it
shows the curves obtained when the lower limit assumes the --_ ....v_o /36

2 and l0 in turn, all things otherwise being equal. This

development is more completely illustrated by the complete
plotted indicatrices presented later on (Fig. III.12, Part 3).

3.2.3. Total Scatterin_ Influence of Limits on Computations

Here again the problem is to determine whether the cal-

culation of total scattering is meaningful when only one part

of the particle population is considered; the upper and lower

limits are set to meet the needs of calculation, but do not

represent any physical reality. This time the reasoning,

analogous to that given above (3.2.1 and 3.2.2) must be applied

to the integral:

I_F(_) 2_(_) d_ (3 9)
°

m

p

which, with the exception of one factor, expresses the total

effective cross section of particles distributed according to

the law F(a) between the minimum and maximum sizes am and _M"
Owe need only recall that the efficiency factor Q varies as
a* within the Rayleigh range (Eq. (2.32)) and as a2 within the

Rayleigh-Gans range (Eq. (2.35)), and that it is, on the average,

independent of a within the Mie range and within that of
diffraction (Section 2.2.8).

Without going into cetail, it can thus be seen that in

regard to the influence of the upper limit (within th_ Mie

range), the total scattering tends toward a limit if the integral

for F(a)a 2 converges, that is, if the total particle surface
area itself tends toward a limit. This implies that the con-

dition:

_r_> 3 (3.1C)
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Fig. 11.13. Influence of the lower

limit; the dotted curves are taken

from Fig. II.12 (upper part,
exponent -3.5). The other two

groups of curves are obtained when

the lower limit of integration is
at 2 and i0 in turn. The

three unmarked curves correspond

to an angle of 180°; they are

characterized by a rapid increase

for high a values.

Key: a. Logarithmic scales

b. Exponent
c. Index

is met if the distribution

is as previously expressed
by F(a) : Ca -m. The total

surface area and thus the

scattering increase with

the logarithm of the upper

limit aM when m = 3.

In regard to the lower

limit (within the Rayleigh

range), the integral between

0 and am, corresponding to

the overlooked particles,

is appl_ed to an equation
using a6-m, just as in

calculating the indica-
trix. As a result the

same condition (3.8),
m < 7, assures a finite

value for this integral.

For various exponents and
indices, calculations show

that the value of this

integral between the
limits 0 and 0.2 remains

completely negligible
in relation to the value

of the integral for the
particles taken into con-

sideration (that is,
between the size limits

0.2 and 200). These values

are given in Appendix 2.

As has been seen

(Section 3.2.2), an

infinite number of particles

may nevertheless yield a
finite indicatrix. In a

similar manner, the total

diffusion, or more precisely,
the total effective cross

section, shown by particles
whose size is between 0 and

am may also be finite, while the total area of the geometrical

cross sections of these same particles is not; the latter factor
is finite only if m < 3. Thus when the exponent remains between

the limits 3 < _ < 7, the case under consideratlon Is actually
realized.

P
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Since this procedure has been performed for angular values,

the progressive value of the integral (3.9) may also be

expressed as a function of the upper limit; Fig. If.14 furnishes

an example of this type for various values for the index and

for an exponential value of -3.10. The value of the initial

gradient of the curves is 7 - m; it then assumes the value

5 - m and finally tends to vanish; the curves then show an

asymptotic plateau, since the convergence condition is met.
The plateaus begin when Q becomes (on the average) independent /37

of a, that is, for _ values which vary with the value of the
index; in reality, these values are related since at this point

the parameter p = 2a(n - i) is equal to 4.1 (of. Section 2.2.8

and Fig. II.10).

J

I

I

f o_). oJ. Q{ocl. d c_

o2

IN01CE5 :

l.

1

o 1 2
LC_ i00¢

Fig. II.i4. Progressive value for the integral yielding
the effective cross section (3.9), as the upper limit
increases to a final value of a : 200. The curves cor-

respond to the indices of refraction indicated and to a

single value for the exponent of particle distribution.

Key: a. Exponent
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Fig. II.15. In this figure, which is analogous to the preceding,

the variable a is replaced by the variable P. The curves cor-

respond to the indicated exponential values; these are normalized

to their asymptotic values (100%). The scales are logarithmic.

Key: a. Exponents

b. Izz %

In measurements where the Van de Hulst equation (2.29) is

a Justifiable approximation (which is the case with the index

values used here), a single calculation is sufficient, the

variable P replacing _. The curves given in Fig. !I.14 are

actually a single curve plotted with a more or less expanded

scale for the abscissa. As a result of this observation, the

integrals computed in this case wlth the variable p are

represented by the curves given in Fig. II.15, each off them

corresponding to a different exponential value. The asymptotic

values of these integrals when the upper limit increases to

infinity may be computed (when condition (3.10) is satisfied);

these values are used in normalizing the graph; however, the

curve corresponding to the exponent -3 must be positioned

/3_ 8
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arbitrarily, since it has no asymptote. In all the curves the

bend occurs when p exceeds 4 (see Appendix 2 for calculation

of the asymptotic values).

3.2.4. Summary Dealin$ with Range of Validity of Calculations

The term "range of validity" is here assumed to have a

precise meaning: it is the range within which the calculations
retain their significance independent of the values given to

the upper and. lower s_ l_*_ _ _-_ .................... _o u_u_'e assumes

that the quantities calculated when the size limits are made to

approach zero or infinity are infinite. Under these conditions,

misapprehension of the physical limits does not invalidate the

calculations. If by extension one assumes that a single law

of distribution (exponential function) governs the population

no matter what the size may be, the conditions for validity

pertain to the exponent of the law. As has been seen, these

conditions differ depending on the quantities to be calculated.

They are collected in the following table, which indicates,

with regard to the value of the exponent, whether the quantities

calculated between 0 and am (influence of the lower limit) or
between aM and _ (influence of the upper limit) are finite or
infinite.

It may be noted that the conditions relative to the lower

and upper limits respectively are mutually exclusive in regard

to the number, surface area or volume of the particles. In

other words there is no range of validity as defined above;

calculation is possible only if there is evidence that physical
limits actually exist. The same is not true for the magnituCes

relative to scattering: the two categories of conditions may

simultaneously be met within some exponential intervals; this
is summarized in the following diagram, where the range of

validity is represented by the shaded area.

I e,cliJiJ!iiiiiiiiiJiii!!iiiiiii!ii!i...........
Indicatrix

i (o) i!i:iiii!

Exponent -2.7 -3 -5 -7

7O



Influence of lower limit

Indi catrix ....... _,,,i,q.__--

i_), for any given 8 [a
Total scattering, .... fi_iq,m.-.
effective cross sections
--- , a I l
Total volume ----t,_,.l._oo....[

a i l 1Total area, geor__._f_.i_ ,_
metrical cross section_ [ J

Total NO. ___ia,l_.___ [ [ [
)f particles I [ [ I

torsi No.._o.-l_%._-h--] [ [

of particles i _ I [ I
Total area, geo----L_&f_a_ 4..... !

_ss sect#ion I I I

Total volume I __L_t_ .i.....
{ I t 1

:Total s cat tering ,_.._l m,_fa i ....... I
Leffective _cr_oss sections [
[rffd-i _-a-£r_x : i l a
i(@) with @= O; ' _'_v_i.

I_(O) with e#0---.J.,,a_ -[

Xey: a. Finite

3.2.5. Extension of Distribution Laws Differin_ from the Junge Law

The preceding conclusions on the validity range, at least as
presented, are valid only for distributions expressed as exponen-

tial laws. However, they may be re-examined and extended to

other types of distribution. The fact that the previously

discussed case is easily treated mathematically makes it particu-

larly suitable as a reference case. It is futile to consider the
case of distributions according to functions of the crenellated

type (rectangular, triangular, etc.), for which the problem of
limits and the significance of the calculations does not occur.

The case of normal gaussian distribution is of this sort, as
will be seen later.

On the other hand, some discussion should be given to the

case of a continuously decreasing distribution which nevertheless

differs from the exponential law, The problem here is thus to

choose a plausible distribution, that is, one which gives an
approximation of the observed decrease within the size interval
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accessible to experimentation 17. Beyond the limits of this
interval, however, the hypothesis on which the exponential laws
are based no longer applies and the new distributions considered
behave differently, To describe _article populations
(natural or artificlal),use has frequently been made of the
exponential function:

_l(_)_A!exp(-Bl _) . (3.11)

or, more often, the gaussian-log function (or log-normai) function:

32 (a)-A 2,xp (-B2 (log _ /Z) 2) (3.12)

where _ is the value corresponding to the distribution maxi- /3____9

mum, and B2 is the "geometrical" standard deviation. For
marine particles, exponential laws (or laws of exponential type,
such as the Weibull law) have been proposed by Carder et al.

(1971). J.R. Zaneveld and H. Pak (1973) also used this dis-

tribution, which has been found to be suitable for all theoreti-

cal calculations due to the convergence at the limits, as will
be seen below.

Consideration of the log-log graph of the preceding

distributions is practical for the purpose of comparison with

F(a) = Aa -m exponential laws. The first remains exponential;

two points determine it completely. The second one simply

becomes a parabola; two points are not adequate to determine it

and a third is necessary, or the position of maximum a must be

fixed arbitrarily. It is oossible to verify that the normal

gaussian distribution beyond the maximum is represented by an

exponential curve (but with a stronger gradient than that of

exponential function (3.11), since the _rgument is double). In
Fig. 11.16, the log-log graph of the a-" exponential function,

chosen as a basis of comparison, is represented by the line

with a gradient of -4. The other distributions were made to
intersect the preceding beth at a = i0 and a = !00, and choice

was made to center the gaussian-logarithmic distribution and
also the normal distribution on a = i.

On the side corresponding to small sizes, the exponential
distribution tends toward a fZnite value wZth zero gradient,

and the convergence condition (3.8) is still met. The gaussian-

logarithmic distribution tends toward zero and the negative
gradient (between _ = i and _ = i0) is necessarily weaker than

17This observation concerning the granulometric analysis of

particles, as well as the choice of numerical values for the

distributions made below, anticipates the discussion at the

beginning of Part 3, _o which one may refer.

72



that of the secant representing the exponential law; condition
(3.8) is met afortiori when the exponential law observes this
condition (7 - m > 0). Exponential laws with a high negative
exponent are necessary so that small particles, in sufficiently
high numbers, have more than a negligible role in the calcula-
tions; in practice, the distributions under consideration assign
these laws a low number which corresponds mathematically to a
quasi-truncatlon for scattering. The conclusion is identical
in regard to gaussian distribution.

_n

iOn'd

i0 n*|

F (,,,) 2 1

\ '..

2 Gousk). Loci _'l\_

I I I

I0 o i0 _ 102

Fig. 11.16. Log-log graph of various

types of distribution with coinciding
values for _ = i0 :_nd _ = I00.

Key •
I. Power law: F(_) = 10n+4a-4

2. Oaussian-logarithmic law:

F(e) = 15= exp (B) exp (-B(lOglO_)21 (3 12b)
with _ = ',,'3). LogelO

3. Exponential law:

F(a) = i:: ezp (10.3) exp (-_)

with _. :./go) . Logel O

4. Gaussian law:

F (a) = l: _' exp (A) ex_ (-Ba2)

with A [ ',.':2o). Loge i0
B (L.cge A ) 92

(3.11b)

Due t_ the shape /40

of the negative gradi-
ents on the side cor-

respondin_ to large

sizes, which are con-

tinually increasing and

are greater than the

righthand gradient,
the convergence con-
ditions are met for

any given scattering
angle e (Section 3.2.1).

The frequency of occur-

rence of large particles
is lower with these

laws than with the

corresponding power

laws; in practice, as

in the preceding, it
is equivalent to trun-

cation. Figure 11.17
illustrates this effect,

making it possible to

compare the indica-
trices obtained with

the gaussian-logarithmic
law with those obtained

with the power law; for
the former, the dist-
ribution is extended to

all sizes from 0.2 to

200 (for a), while for
the latter the distribu-

tion is truncated below

am = I0 and above _M =
= i00. Superimposition
of these two indicatrices

shows that they do

actually coincide

(which is not entirely

the case for the pola-

rized components ii

and i2). 73
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Fig. 11.18. For the preceding

gaussian-logarithmic distribution,

this figure shows the progressive

values for the integrals:

¢; "'F(a). iT (e,ol) d_, ,

as a function of the upper limit
a, and for the same values for

the angle 8 as previously (Fig.
IZ.12).

Key: a. Log scales

b. Gaus_lan-log
c. Index

It would be futile

to give further cal-

culations and examples

of this type, given

the arbitrary nature of

the laws used, especially

in regard to the posi-
tion of the distribu-

tion maximum. Suffice

it to say that with

exponential laws _nd

especially log-normal
laws one obtains results

very close to those

resulting from applica-
tion of the equivalent

power law (and in the

case of log-normal laws,
results which are as

close as desired,

depending on the param-
eters chosen). On the

other hand, this is
never the case with

the gaussian law, even

truncated beyond the
maximum.

Finally, between
the sizes where the

distributions coincide

(i0 and I00 for the

example given here),
the curves show a

convexity; as a result,
these distributions

tend, more than the

power law, to favor
particles of inter-

mediate size (26 to

50), which play a

role of comparatively
greater importance

in scattering. An
example of this result

will be given la_er on

(Part 3, Section 3.1.2).
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Figs. 11.17. Indicatrices obtained with gaussian-logarithmic

distribution (Eq. (3.12b), Fig. 11.16) and with Junge distribu-

tion with an exponent of-4, truncated below _ = i0 and above

= !00; the indicatrices are plotted with the decimal log of
the normalized scattering coefficient T(0) expressed as a function

of 8. The values for _l(e) and 6_(8) corresponding to the vertical
and horizontal polarized components are represented by dots and

crosses, respectively.

The points indicated by arrows correspond to the calcula-
tions performed by O. B. Brown and H.R. Gordon (1971) for the

same exponent, using the limits 8.6 and 86 (diameters I to I0 um

X = 488 rim) and with the index 1.05-0.01 i. For comparison, the

values were recomputed so as to be given in the form of a nor-

malized coefficient _(e). The upper limit is 86 rather than

200, but taking the exponent into account, the configuratiom is
virtually asymptotic (cf. Section 3.2.1), and the results are

found to be comparable.

Key: a. Index
b. Gauss_an-lo_

c. Limits

d. Efficiency
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PART 3 /41

_ntroduction

Calculation of the scattering properties of a polydispersed

system involves, on the one hand, parameters related to the law
and limits of distribution, and on the other hand, the relative

index, which will be termed the "mean" index since it is assumed

to be the same for all the particles. Various numerical appli-

cations have been presented as examples in the previous expan-

sions, but without any discussion of the choice of values
attributed to the parameters used. A few theoretical cases

have been systematically treated for purposes of comparison

with the experimental results, and it was necessary to make a

choice of values which might be examined here.

The value assigned to the oarticle index of refraction

could hardly be anythinc more than hypothetical, since no direct
measurement seems to have been made. On the Oasis of the mineral

content of particles in suspension (calcium carbonate, silica,

alumino-silicates, various hydroxides, etc.), assumed to be in

crystalllne form, it is possible to determine an average index

value. Values frequently given on the basis of these ccn-
sideratlons are on the order of 1.15 or ].201 (relative values

in relation to water, that is, 1.53 to 1.60 in absolute values);

calculations have been made for clays in suspension yielding

the value 1.15 (and an imaginary part equal tc 0.001; H. Pak.
• first of all,R.V. Zaneveld, G.F. Eeardsley, 1971) However,

it is probably not realistic to attribute the index for the

crystalline form to the entire particle, even if it is basically
mineral. Certain insoluble substances or precipitates may be

present in strongly hydrated colloidal forms, or aga_n_ the

mineral part of a detrital particle may be only a sheli_ for
example; such mineral particles would have a "m_an" index
closer to that of water than that determined from the strict

composition (excluding water). In addition, there _s always a

considerable proportion of organic substances in the suspended

material, and the index for these substances is very close to
that of water. Recently K.L. Carder etal. (1972) used measure-

ments of scatterin_ in unicellular algal cultures (Isochrysis

galbana) to determine the relative index, which they found to be

on the order of i_026 to 1.036 for this organic substance).
Organic materials _, which form the heaviest proportion of total

]See for example W.V. Burr (1956], Y.E. Otchakovsky (]965),
and N.G. Jerlov (1968).

2particulate organic carbon was the _;ubstance actually tested,

and the total weicht of organ._c substances was determined from

th_s quantity, generally by multiplyi_.g it by a factor of 2

(a factor of 1.80 was used by D.C. Gordon).
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particle weight for surface waters in general, remain in high
percentage even in deep layers; between the surface and depths
of up to 4000 m, the relative abundance of particulate organic
matter has been found to remain higher than 25% (D.C. Gordon,
3.970) and to range from 40 to 60% (L.A. Hobson, 1967), 40 to
100%3 (P.J. Kinney et al., 1971), 40 to 88% (C. Copln, G. Copin,
1972) and from 26 to 49% (J.E. Harris, 1972). This leads to a
choice of values close to 1 for the "mean" relative particle
index. In any case, preliminary individual indlcatrlx cal-
culatlons were performed for five index values covering a
sufficiently broad range, from the low values (1.02 and 1.05)
considered most likely up to the characteristic value of the
mineral fraction (1.15), the intermediate values chosen being
1.075 and 1.10.

There are experimental results relative to the law off
distribution, as opposed to the index. In particular, the use
off an electrical granulometric counter (Coulter Gounter) has
made it possible to obtain new data (L.A. Hobson, 1967; E.W.
Sheldon and T.R. Parsons, 1967; K.L. Carder, 1970). The meas-
urements made by H. Bader (1970), like those by J.C. Brun Cottan
(1971), reveal that the Junge law (that is, a d-m power law,
d being the diameter) previously proposed for atmospheric
particles (C.E. Junge, 1963) seems satisfactorily to describe
the distribution of marine particles. This counter permits
granulometric study of particleshwith equivalent diameters
ranging from 1 wmto 15 or 20 _m_. In a number of cases the
decrease in the number of particles as the diameter increases
follows two successive laws, one with an exponent of between
-3.3 and -3.9 within the interval 1 _m to 4 or 5 _m, and the
second, beyond this size, with a higher exponent (in absolute
value) of approximately -4 to -5.

A large number of measurements taken in very different areas
of the Atlantic and the Pacific (R.W. Sheldon et al., 1972) show
that in a very general manner, the distributions are such that
for equal logarithmic size intervals (for example from 1 to 2
_m, then 2 to 4 _m, then 4 to 8 um, ...), the volume of the
particles belonging to these classes remains roughly constant.
It may easily be verified that this property of logarithmic
equipartition of volumes is that of distribution with the
exponent -4. According to these investigators, this equlpar-
tition has extended to a very broad range of sizes. For surface

319 to 55% for particulate carbon (cf. Footnote 2).

4Other intervals may be studied, but corresponding to greater sizes;
1 um is approximately the lowest detection threshold for the Coulter
system. The diameters determined from the measurements are those
of equivalent spheres, that is, spheres with the s_e volume as the
actual psrticl_s, independent of their shape.
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water and in productive regions, the preceding distribution

frequently is limited by maximums (toward 16 to 20 _m, for

example) indicating the presence of phytoplanktonlc particles.

The exponents for the calculations (from -3 to -5 with an

increment of 0.1) have been chosen within an interval widely

covering the experimental values. Systematic results for eight

exponential values within this interval and for the five index
values have been presented elsewhere (A. Morel, 1973); the same

source presents results obtained with log-normal and exponential

distributions. Even if the power laws are found to be slightly

oversimplified in relation to reality, more complex distributions

may be broken down into several successive laws of this type.

In any case, they are convenient for computation and, as has
been seen, they may also serve as a basis for prediction
of results in cases where other distributions must be con-

sidered (cf. Section 3.2.5, Part 2).

There are apparently no results concerning the laws ruling

the distribution of particles with dimensions less than 1 um;

for those with dimensions greater than 20 _m, -m exponential

laws continue to be applicable (m may become slightly greater

than 4, since the volumes for classes of increasing order have
a tendency to decrease; R.W. Sheldon et al., 1972). However

arbitrary they may be from a physical standpoint, limits must

be set to facilitate computation. Their influence has also been

studied, to the degree in which it is predictable. Preliminary

individual indicatrlx computations have been performed for a

values ranging from 0.2 to 200, and the integrals to be computed

for pol_dispersed systems have been computed between these
llmlts._

From a practical standpoint this brings us back to the

correspondence between relative parameters a and 0 and diameters

d. By way of review: a = _dne/ko and p = 2a(n r - 1), where d

is the diameter of the sphere, _o the wavelength in a vacuum,
ne the refractive index of water (1.33), and nr the relative
index of the particle in relation to water. The calculations

performed between a = 0.2 and a = 200 correspond to particles

with diameters ranging from 0.02 um to 20 _m, when _ = 419 nm
(in this case a = l0 d), or on the other hand from 0.04 _m to

40 um if I = 838 rim. In addition p = d if nr is given the
value 1.05 when k = 419 nm; this case is frequently taken as an

example. Thus in order to compare the various distributions,
these were made to coincide for a = i0 and a = i00 (Part 2,

Section 3.2.5), or for d = 1 and i0 um if k = 419 rim, that is,
for diameters within the range covered by the measurements.

5Computations have also been performed between the theoretical

limit a = 0 (zero size) and a = 0.2 (of. Appendix 2 and Section

3.2.2, Part 2).
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In thls respect, the gausslan-logarlthmlc law used could have

been approximated by two power laws, one with the exponent
-3.4 up to a = 40 (d = 4 pm), and the other wlth the exponent

-4.5 between a = 40 and a = 200 (d being 4 to 20 um), which

constitutes a rational example (see above).

In order to orient comparisons of the experimental and

theoretical lndlcatrlces, It Is first necessary to examine how

the theoretical Indlcatrlces vary with the index and the exponent

of distribution (Chapter I). Various comparisons are made and
probable exponent and index values are determined on the ho_

of the agreement observed (Chapter 2). Various applications

for the theory are studied, in particular its use to explain

the spectral selectivity of scattering and polarization. Con-
clusions are also drawn on the different roles of various

particles and the relationships between the concentration of

the suspended material and scattering (Chapter 3).

i. Theoretical Variations in the Indicatrix

I.i. Influence of the Exponent of the Law of Distribution on
the Indicatrix

Figure II.12, presented in Part 2, has already shown the
direction in which thls influence is exerted. The difference

between the various plateaus characterizing the final indlcatrlx
was found to vary with the exponent, and it is possible to

determine the manner in which it varies. The various plateaus

begin at fixed values for _ which depend on the angle 0 involved.
As a result the differences are determined directly by means of

the initial gradient, which Is the same for all the curves (no
matter what the _..o_c may be) and whose value is 7-m. This
makes it possible to calculate7 a phenomenon which Is already

predlc_able from a qualitative standpoint: when large-slze

particles are proportionately more abundant, that Is, when m

6These are the a values for which the curves IT(e)a -4 begin to

diminish and which, It will be remembered, are independent of

the index, except if the angle e Is small (2 ° , for example).

This property is demonstrated by the Raylelgh-gans theory

(of. Part 2, Sections 2.2.3 and 3.2.1b).

7For example, If aI and _2 are the a values for which, according

to the Raylelgh-Oans theory, the first dark rlng attains the

angles eI and 02, the ratio of scattering intensities at these

angles l[el)/i(_ 2) will vary wit:_, the exponent proportlonal to:
(al/ap)f-m. The corresponding values for _ and 0 are given In
atabIe _n Part 2, Section _.2.3.
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decreases in absolute value, the initial gradient of the curves

is stronger, the plateaus thus occur at a later stage and the

overall Indicatrlx is more asymmetrical. This development of

the Indlcatrix is shown in Fig. III.1. It has been plotted with

the values of the integrals expressed as a function of m
(varying from 3 to 5):

fM iT(e,a ) _-m da ,

%

for various angles e; the upper and lower limits remain constant
(0.2 and 200 respectively). The intensity at 0° serves as a

normalization value. It can be seen in this figure that the

•"_-st variation is _* _ _ _*_ _-f_°_li,±t_°) but thl_
has no slgnlficance since the integral for 0° does not converge,

as has been seen. The significant shapes are those of

curves for angles other than 0°. Thus the Indicatrlx (from 2°

to 180 °) covers five orders of magnitude for the exponential

value -3 and three orders for the value -5. Another point which

wlll be seen to have so_e importance may be noted: between the

exponential values -3 and -4, the various curves remain approxi-

mately parallel. This indicates that within this range the

indicatrlx is aut very sensitive to variations in the law of

distribu%ion, at least for "mean" angles (since the 180 ° angle
is an exception to some degree, and no statement can be

made for the 0° angle).

Some consideration should also be given to case_ in which

the distribution, rather than following a single law, follows a

law in which the exponent successively assumes two values m 1
and m 2. As has been observed, the second value is greater (in

absolute value) than the first; it corresponds to the law

applying to particles with a diameter greater than 5 _m (that is,
a > 50). In reality, the integrals for the various angles,

except for 0o, have virtually reached their asymptotic value

at a = 50 (see Fig. III.2). As a result, the fact of whether

the particles are distributed according to a -m I or -m 2 law
beyond a value of 50 for the a parameter has no influence on

the final form of the Indicatrlx, except for the value at 0°.

Figure III.2 manifestly shows this fact: indicatrices correspond-

ing to populations extending from am = 0_2 boa M = 200 or from

am = C.2 to aM = 50 are plotted for two index values; withln
the latter a range it is obvious that beginning with a = 50,

the second exponent m 2 become; infinite. The indicatrices
virtually coincide, except at 0°. In conclusion, with the

laws of distribution considered, large particles play a small
role and the more or less heavy depletion of these particles

(more or less high m 2) has little effect on the shape of the
Indlcatrix.
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1.2. Influence of the Index of Refraction on the Indicatrix /43

The value of the exponent influences the shape of the

resulting Indlcatrix, but the shape of the individual indica-

trices involved in integration, on the other hand, is governed

by the value of the index of refraction. Figure III. 3 furnishes

an example of this influence: the exponent being fixed (m = 3.5),

th_ ratios IT(e)/iT(0 °) are given this time as a function of
the index, and the upper and lower limits of the integrals

retain the same values as previously (0.P and 200). It was
pointed out in Part 2 (Sections 2.2.5 and 2.2.6) that the

influence of the index for Individual indicatrices is virtually

restricted to extreme ranges uf small angles (0° to l0 °) or

large angles (in the vicinity of 180°). The summations per-

formed do not change this property, permitting the following
observatlor_:

-- the overall asymmetry of the indicatrix decreases as
the value of the index increases. Thus the ratio of

scattering intensities at 2° and 140 ° corresponds to

six orders of magnitude when n = 1.02 and only four
orders if n = 1.15.

-- however, it may be found that this va_iation in asym-

metry is virtually solely attributable to variations

in the ratio iT(10°)/iT(2°). On the other hand, the
curves for angles ranging from lO ° to 140: (and even

the curve for 160 °, which is not shown) remain appre-

ciably parallel, and as a result the "mean" region

(10 ° to 160 °) of the indica_rix depends very little
on the index of refractlon, o

-- finally, the curve corresponding to an angle of 180 °

shows that in _elative value, backscattering becomes
more marked as the index increases (as a result of the

increase in the reflection factor).

It now may be noted that on the basis of the preceding

findings, criteria exist which at least theoretically would make
it possible to derive a rational value for the index from the
mea3urements. The ratio of scattered intensities at 2° and l0 °

is a criterior: of some importance, especially if the index varies
• . 0r_ and 1.15,between 1 02 and 1 075; for the higher values, 1. _

backscattering would constitute another criterion (unfortunately

poorly suited for experimental use). Another detail revealed

8It is not _ossihle to generalize this finding; this property

is linked to the index values considered, which are close enough

to i to make the Raylelgh-Gans approximation valid and applicable
(of. Part 2, Section 2.2.3).
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Fig. III.1. Influence of the exponent

of the law of particle distribution on
the indlcatrix; the index of refraction

is 1.05. The size parameters correspond-
ing to the limits of distribution are
0.2 and 200.

by the complete

indicatrlx curve may
also serve as a
criterion: this is

the fact that a

slight relative
maximum may be noted

whose angular

position _s d_rectly
linked to the value

of the index (about

60 ° for n = 1.05

and about 85 ° for

n = I.i0; Fig.
III.2).9 The maxi-

mum becomes more

pronounced as the
calculations take

larger particles into

account, since only

these particles are

capable of producing
this effect.

Key: a. Inaex From a practical

b. Exponent standpoint, measure-
ments of indlcatrices

have seldom been

performed with a sufficiently small angular interval for this

phenomenon to be definitely shown. It may be noted, however, that
the mean indicatrix obtained by Jerlov (1961) and that given by

Otchakovski (1965) possess a sharp convexity toward 60 to 70 °

(which would correspond to an index of approximately 1.05). A

device continuously recording the scattering coefficient as a

function of the angle would make it possible to determine whether

this effect is more or less permanent and thus whether it is
possible to use it to determine a mean refractive index. In this

respect, the indicatrix determinaticns made by J. W. Reese and

S. P. Tucker (1970) show that a slight maximum occurs very

frequently between 55 ° and 75 ° .

The problem remains, whether it is possible to determine

criteria for the exponent similar to those which have Just been

indicated for the index. Referring again to Fig. III.1, one
finds that the total amplitude of the indicatrix is a pricrl the

quantity w.h_ch_ truly varies with the =^pv,,_,,_*. ,.__nwever, fcr the

reasons of non-convergence already giver:, the value at O° cannot

See also the indicatrlces given in Appendix II. The equation

linking the index with the angle at which this energy concentra-
tion occurs has been shcwn in a _ra?h (_art 2, Fig. II._).
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Key: a. Exponent

be taken into con-

sideration. In addi-

tion, as has Just been

seen, the angular
range 2 to I0 ° is

particularly sensitive
to the value of the

_ndex. Use of the ratio

of intensities at

2 ° and 140 ° to define

the amplitude would re-

suit in a magnitude for
which the influence of

the exponent could not

be distinguished from
that of the index. On

the other hand, as

shown by Fig. III.3,
the ratio i(10°)/i(140 °)

is virtually independent
of the index. The

amplitude of the indi-

catrlx, which is no

longer total but

restricted to the range

l0 ° to 140 °, might
well constitute the

criterion desired.

/44

1.3. Conclusions To Be Drawn from Theoretical Variations in the
Indicatrix

An initial conclusion may be drawn from the preceding. This
is the fact that when the index of refraction varies within

relatively broad limits, the scattering indicatrix undergoes little

change, at least wi_h reference to the "mean" angles (10 ° to 140 °,
to set these values); the same is true when the exponent of

distribution varies, although this occurs within slightly
narrower limits (from approximately -3 to -4). This may consti

an initial explanation for a flndingwhichhas been made experimentally:
the low value of the indicatrix for marine particles. (It may

be noted that this fact has been established primarily on the

basis of measurements at mean angles. This explanation will be
expanded and discussed in more detail in the following chapter•

The case of small angles where the variability is gre._ter will
also be examined.

2. Interpretation of Observations and Applications

It should first be shown that the relatively non-variable

theoretical indicatrices which have just been mentioned do
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Fig. III.2. The curves showu as unbroken

lines correspond to indicatrices calcu-

lated for size limits of am = 0.2 and

aM = 200; for the indlcatrices shown as
dotted lines, the upper limit aM has

been lowered to 50. Positioning of the

curves marked l, relative to the index

1.05, and 2, relative to the index

I.I0, is arbitrary. On the other hand,

in each of these two cases, the dotted
line curve and the unbroken line curve

are correctly placed in relation to

each other, in such a way that the

total scattering coefficient is the same

(that is, they are correctly placed if

the angular coefficients are considered
to be normalized). The crosses and tri-

angles correspond to the horizontal

polarized component i2, when aM = 200

or when aM = 50, respectively; the dots
correspond to the vertical component

il, without any distinction between the
values obtained in the two cases.

Key: a. Exponent
b. Index
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coincide with the

experimental in-

dicatrix; subsequently

an attempt will be
made to determine

whether some varia-

tions within the range

of possible variations
more accurately

represent the

experiment. This

procedure may make
it possible to

derive probable
values for the

index of refraction

and the exponent of
distribution.

To make com-

parisons, use will
be made (Section 2.1)

of those properties
-- such as the

ratios B(10°)/B(2 °)

and B(140°)/B(10 °) --
which have been

found to vary suffi-

ciently, either with
the index or with

the exponent, to
be able to serve as
criteria. Ratios

of angular coeffi-
cients to the total

coefficient will

also be used (Section

2.2), that is, nor-
malized coefficients

_(e), whose values

depend conjointly
on the index and the

exponent. If the

experimental varia-

bi]ity of these
ratios is found to

be smaller than the
theoretical varia-

bility, this will
indicate that actual

indices and expo-

nents var: within a



a more limited range than that considered for the computations.
Each property will result in the delimitation of a range of this
type; if all these ranges are compatible or at least have one
part in common, one may expect to deduce rational values for the
index and the exponent from the experiment. Indicatrices cal-
culated with these values are compared to the experimental
indicatrix (Section 2.4).

Methods for evaluating the total scattering coefficient on
the basis of angular measurements have been proposed by various
investigators. Examination of the theoretical variability of a
few normalized coefficients (normalized to 90° , 45° , 6° and 4°;
Sections 2.2 and 2.3) so as to determine the index and the ex-
ponent at the same time provides a means of reconsidering the
basic validity of such methods.

2°i. Application of Criteria to the Index and the Exponent of

the Law of Distribution. Ratio of Angular Coefficients

As has been seen (Section 1.2), the ratio of scattering
coefficients at l0 ° and 2° is much more sensitive to variations

in index than variations in exponent; inversely, the ratio of
coefficients at 140 ° and i0 ° is dependent almost exclusively on

'the exponent; the index and exponent vari_.i s are separated to
some degree. The theoretical variations in these ratios with

the two variables considered are given in Fig. 3.4. Experimental

values for the same ratios are listed in Table i. Relatively

few measurements were performed conjointly at 2° and l0 ° or at

i0 ° and 140 °. In addition, for their use here, the measurements

taken at lh0 ° had to be expressed in absolute values so that the

proportion due to molecular scattering, which is frequently sub-

stantial, could be subtracted; only on this condition is the
ratio _(140°)/_(I0 e) physically significant. Use of the values

2"10 -2 and 5.5.10-2 to set experimental limits for variations

in the ratio B(10°)/B(2 °) and transfer of these values to the

graph (III.4) of theoretical variations results in a range

being defined by intersection. This corresponds to the combined

values for both the index and the exponent, for which the calcu-

lations represent the experiment. Due to the very nature of

this criterion, this range leaves the exponential values un-

determined, but restricts the possible values for the index; it
thus appears necessary to set aside any values outside the

interval 1.02 to 1.06. In the same manner, choosing the experi-
mental values 0.6.10-3 and 2.3"i0-3 as limits for the second

ratio, another range may _e determined which gives little in-

formation on the index (less than 1.10, however), but stipulates

the values for the exponent; for example, if the index is

assumed to be equa± to 1.05, the exponential values compatible
with the experimental results are approximately -3.8 tc -4.3.

For the sake of clarity, the two ranges defined in this way

are given on an m-m diagram (that is, one whose ccordlnates _re

/45
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Fig. III.4. Theoretical variations in the ratios
8(10°)/8(2 °) and B(140°)/B(lO °) as a function of

the index of refraction, for the exponential valuee
indicated. The experimental values are located

within the bands designated by braces.

the exponent and the index; see Fig. 111.6). The common part thus

corresponds to rational values for the index and the exponent,
taking the experimental results available into account.

Spilhaus (1968) has considered the possibility of using the

ratio B(30°)/8(45 °) to characterize the shape of the indicatrix.

Figs. III.1 and III.3 show that the curves plotted for 20 ° and 40 °

remain appreciably parallel when the index or the exponent varies.

It thus appears that in a final analysis, this ratio, which

theoretically shows little variation, is a relatively poor choice
for the discounted index. All the same, the theoretical values

agree perfectly with the experimental values (on condition that,

here again, molecular scattering is subtracted; moreover, this is

a problem in interpreting this ratio which Spilhaus apparently
did not take into consideration). Table 2 shows both the

theoretical values and a few experimental values for this ratio.

Even though from a statistical standpoint the values are signi-

ficantly distinct (A. F. Spilhaus, 1968), it may be seen that it

is difficult to draw conclusions on the slight variations ob-

served, except perhaps in regard to the exponent: these experimental

values _uld show that this value may vary _asically from -3.5

to -4.2, the most frequent value being -3.9, which is not at all

contradictory to the conclusions drawn from application of the

preceding criteria.

2.2. Relationships between 8(45 °) or B(90 °) and b

As early as 1953, Jerlov (N. G. Jerlov, 1953) recommended
deriving the total _catter_: coefficient b from measurements made

at 45 ° . Subsequently a number of investlgatcrs have advanced
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the opinion that theoretical proof of the constancy of the ratio
between B(45 °) and b has been supplied by D. DeirmendJian (1963).

In actuality, this theoretical work dealt with scattering by fog

and clouds, the computations being performed with the index of

refraction of water and specific laws of distribution. The con-

clusion drawn by Deirmendjian, statinglthat B(40 °) is virtually
constant (and is moreover equal to i0- ) has not been extended

to all cases, since it does not comprise a proof properly speaking,
but rather the verification of a numerical property characteristic

of the distributions used. Thus Fig. 111.5 shows the manner of

variation of _(44 °) with the index for four values for the expo-
nents of the law of distrlbution. I0 Contrary to the distribu-

tions considered by DeJ_mendjian, the power laws result in a

considerable variability for the normalized coefficient _(44°),
at a constant index value.

Table III gives a number of values obtained for the ratio

B(45°)/b -- that is, B(45 °) -- values which are relatively certain
to be obtained in measurements where computation of b by integra-

tion is based on experimental values at small angles, and not on

extrapolated values, to the extent that it is possible to subtract
the f_action attributable to molecular scattering from _(45°).

These observations are also valid for the experimental values for

_(90 °) shown in the same table. An examination of this table

reveals that the experimental values for _(40 °) are located within

a narrower interval than the theoretical values, implying that the

effective variations in index and exponent are smaller than those

considered in the computations. As previously, the corresponding

ranges are obtained by comparing the computed values with the

experimental values chosen as limits, that is, 1.5.10-2 and
3.6.10 -_ for _(45°), and 1.5.10-3 and 4.10 -3 for _(90°). The

ranges, which virtually coincide, are shown in the m-n diagram
(Fig. III.6).

In sum, although in practice the relationship between b and

B(45 °) is relatively invariable, as was expected, this has not

been borne out theoretically. Inversely, this relationship tends

to show the relative stability of the properties of marine

particles, both in regard to their distribution and to t_eir

average composition, on which the index depends.

/4__!7

l0
The curve for the exponent -3.10 is not represented, since for

this exponential value, the asymptotic value of the total scat-

tering coefficient is far from being reached with the upper

limit aM used (that is, _?_I= 200, which corresponds to a varla-
tion in 0 from 8 to 60, depending on variations in the index from

1.O2 to 1.15); as a result _(I_4 °) is overestimated in this

case. With the exception of a few perce_,tage pcints, thls ef-

fect no longer exists with other values for the exponent (cf.

Part 2, Section 3.2._ and Fig. II.15). This problem does not

occur for Fig. IIY.4, _ince the ancular coefficients making up

the ratio have re_ched their asymptotic v_lue, even for the

exponent -3.10.
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TABLE I. EXPERIMENTAL VALUES FOR THE RATIOS B(10°)/B(2 °) AND

B(140°)/8(i0 ° )

¢(]o°) 1 6c_°) z lo:J

--[ 2. 2.? 3.o 13.2 _.YI_2.2 - _.o)
it|_nglis_ Lo,g i M6diterranear

I''_'" '|Channel Argus I,_iund
[ |& Medft. l_;].andg¢,uhd I

c21

L,._ 3.g

(_,5- 5,h)
At,l ant. }'acif.

(5)

8(].LO"_ / _(]o°) × to 3

(;.oo- z.7o)Io.6o-z.9o z.c6- 2.28
Englisb { Atl_nt. Pacif.
CnaD.ne.L- /

I Meaz_. I
1 [ 51

(i) Ratio computed on the basis of values read on the

curve given by Y. E. Otchakovsky (1965).
(2) Average values for ratios corresponding to the

mean particle indicatrix. The latter is obtained
by combining values at angles ranging from 30 ° to

150 ° (A. Morel, 1965) with values for small

angles, from 1.5 ° to 14 ° (D. Bauer, A. Morel, 1967).

(3) R. E. Morrison (1970), ratios measured on curves

plotted by a method termed "Duntley" extrapola-

tion by this investigator (Fig. 4, in Ref.)

(4) Ratio corresponding to the average of measurements

made in situ at three wavelengths; (4b) to the

average of measurements made in vitro at two

wavelengths (laser) (F. Nyffeler, 1970). For
the in situ measurements it was necessary to ex-

trapolate from 3° to 2° to construct the ratio.
(5) Three measurements taken in the Atlantic (the

Bahamas) and two in the Pacific (in the San!Diego

area) (T. J. Petzold, 1972). For 140 ° , molecular

scattering was subtracted from the absolute values
given by the investigator prior to calculating
the ratio.

2.3. Characteristic Properties of Coefficients B(4 ° ) and 8(6 ° ) /48

The numerical property revealed by DeirmendJian for a

scattering angle of 40 ° has an equivalent in the case of the

indices and Junge laws of distribution considered here. If the
indicatrices obtained for the various indices and exponents are

examined (A. Morel, 1973) when they have been plotted as normalized

8(8) values, one finds that they assume approximately the same
values at approximately 4° and 6° (on the order of 12 and 6,

respectively). The values for _(4 °) and _(6 °) are given as a func-

tion of the index for various exponential values in the same
fi_ure, 111.4. It may be observed that for a given index value,

th, variations in these coefficients with the exponent are slight

compared to those of the coefficient _(44°). Even if variations in

_8



TABLE II. THEORETICALAND EXPERIMENTALVALUES FOR THE RATIO
8(30°)/B(45 °)

T_eoretical values

[Expo- I Inde_ of refrac_io_

Inent _ 1.02 1.05 1.o75 I._

I-3.9 13,382 3._e7 3,b_l 3,b351
I -b.2 r3.053 3,057 3.06(. 3.0551

2.72_ 2.71! J

Experimental values {standara aevzatlonsj

3.70 Z 0,I_0

Eng. Chan.-Medil

3,85 Z 0,25

3,63 Z o,bo

3,77 -_ o,75

Indian Ocean

3.h3+-o.39Baltic

3.38+0.61 Medit,

(u)

3,33 t 0.2_2 coas_gl

-3,32 Z 0.1h N°W.Atlant.

3,61 Z 0,26

2.91 + 0,06 Bem_udaS

(2)

3.69 Z 0.67 _e1_udaS

3,53 _- 0.67 (Argus Isl_nd

3,2_ Z 0,19 Long Island
3,52 .+ 0.33
3.32 +-O.2h _ound

(3)

23,00 ._. 8 3,17 3.38

2.83 (£) 3,_8 3.18 (b) 3.6h
2,97 3,33

_tlant. Pac. Atlant. Pac.

(la) Average value for 20 measurements taken in the

English Channel and 40 in the Mediterranean

(A. Morel, 1965).

(lb) Average values, at wavelengths of 546, 436 and

366 nm respectively, for 17 samples from the

Inuian Ocean (Madagascar, unpublished, A. Morel,
1967).

(2) Average values for five types of water sampled

between Woods Hole and the Sargasso Sea

(A. F. Spilhaus, 1968).
(3) R. E. Morrison, 1970.

(4) Twelve measurements made in the Baltic Sea (ex-

cluding 1.25 m station) at four wavelengths

(655, 632, 525 and 450 nm), G. Kullenberg
(1969).

Sixteen measurements made in the Mediterranean

(633 nm), G. Kullenberg and N. B. Olsen (1972).

_hese are the scattering coefficient ratios only

for the particles considered here.

(5a) Ratios obtained from the values observed by
T. J. Petzold (1972).

(5b) Ratios obtained from the preceding values but

with the fraction attributable to _ole@ular
scattering subtracted (1.67.10 -4 m-± at 90 °

for I = 510 nm, A. Morel, 1968).

the index -- at least between 1,02 and 1.10 -- are taken into

account, the conclusion remains the same; thus, for example,
_(4 °) varies from approximately 9.6 to 14. This supports a recent

observation made by V. I. Mankcvski (1971) with reference to

indicatrices plotted in normalized B(_) coefficients (Fig. III.6B).

All these indicatrices merge toward 8 = 4.5 ° , on the average, and

statistical analysis shows that the correlation coefficient is

highest when the regression between b and 8(e),e has a value of

4.5 °. This regression yields 8(4.5 °) = 9.0b. Assuming (on the

8_



i ! I

,s_n _'""

' _ '|0' | I).S

//35

I,_ 115

III:U

FI
i jl
I)0 II_

Fig. 111.5. Theoretical variations of normalized

angular coefficients with the index and the expo-

nent, for 4° , 6° , 44 ° and 90 ° . As in Fig. III.4,
the brackets correspond to variations observed for

single coefficients. These theoretical values, like

those in Fig. III.4, are computed for particles
whose relative sizes _ range from 0.2 to 200.

-1.5
basis of the gradient of the indicatrix) that B(e) varies by e
within this range of angles, for 4° the preceding value is trans-

formed into B(4 °) -- i0.7. This value is identical to that given

here: 4750/444 = i0.7 (-+17%) (D. Bauer, A. Morel, 1967, and
Table If, Part 2).

One obvious result of the fact that the normalized coefficient

_(4 °) depends very little on the index and the exponent is that
comparison of experimental and theoretical values will furnish

little information on rational indices and exponents. However,
if the value 10.5 ± 2 is used, for example, this value eliminates
the possibility of indices higher than 1.10; from another stand-

point, if one assumes the index to have a value of 1.05, all
exponents (between -3.2 and -5) are possible. One might add that

B(10°),_ which theoretically is already more variable than B(6 °)

or B(4°), neverthele.Js remains close to one; it varies from 0.8

to 1.8 when the index is between 1.02 and 1.05 and the exponent

between -3.5 and -4.2. It may be noted, without goi_ into further
detail, that this fact is confirmed by measurements _ (on the

ll

_b

90

Se__ p. 12: [(i0 °) = 1.126, and also the values obtained oy

Mankovski: apprcxlmately 0.7 and 1.3, and by Petzold: 0.$5,

1.13 and 1.04 for the three measurements made in the Atlantic,
and 0.88 and 0.99 for the two measurements made in the Ssn

Diego area.

REALITY OF THE (
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TABLE III. EXPERIMENTAL VALUES FOR 8(45 °) AND 8(90 °)

AND STANDARD DEVIATIONS

_(_°) x lo 2
+ 11.6 .+0._2.0 "-0,5 ! 2._ ± 0.9 2.5, o,_ I ,tl=t.

F.ngl,s'_.,,l.n, _4 m,lt,c """ I
(1) | (2,,) (_) I (3)

2.3 -_ O.T 1.9 -_ 0.3 3.h -+ 0.2 I 2,58 1,82

• 13.o5 z.78
I 2,80

Me_t. Atlant.(_) BlaCksea - r tl_Si Pacif"

_(9o °) x 1o3

" 2•13 i•63

1.85

U (_) (2b) C3) (s), I

(i), Mean particle indicatrix (A. Morel, 1965) nor-

malized by the value 444 for the integral yielding

b, computations performed assuming 8(90 ° ) = 1

(A. Morel, 1968, and corrected computations, 1970).

Normalized by the value 337 given by F. Nyffeler
(1969) for the same integral, the values 2.0.10-2

and 2.2_-10-3 respectively become 2.6.10 ..2 and
3.0.10-_. Twenty-seven measurements taken in the

English Channel and 40 in the Mediterranean.

(2a) Sixteen measurements made in the Baltic Sea

(G. Kullenberg, 1969).

(2b) Fourteen measurements made in the Mediterranean Sea

(G. Kullenberg, N. Olsen, 1972); the measurement

made at 150 m, station A2, was left out of the

averages.
(3) Inverse of the ratios b/S(e) given by R. E. Morrison

(1970), b being the value obtained with the inclu-
sion of measurements at small angles (termed "Sp"

by Morrison).
(4) Twenty-three measurements made in the Mediterranean,

90 in the Atlantic, 104 in the Black Sea; measure-

ments performed by V. I. Mankovski (1971).

(5) Measurements made by T. J. Petzold (1972); before

the ratios were formed, molecular scattering was
subtracted from the values given by the investigator•

other hand, 8(i0 °) becomes greater than 2 for any exponent if the

index is equal to or greater than 1.075) For this angle of l0 °

the angular coefficient and the total coefficient have close
numerical values,

rv
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Fig. 111.6. Diagrams plotted in the m-n plane

(n being the index of refraction forming the ab-

scissas and m being the negative exponent of the
law of distribution forming the ordinates) to re-

veal the ranges in which the theoretical and ex-

perimental values are compatible. In the lefthand

figure, the band between the two unbroken curves

corresponds to application of the criterion con-

stituted by the ratio B(IO°)/B(2°), and the band

between the two dotted curves, to application of the
criterion 6(140°)/B(lO°). The area common to these

two ranges has been transferred to the figure on

the right. This figure also shows the ranges ob-

talned by comparison of the theoretical and experi-
mental values for normalized coefficients _(44 °)

(range defined by the unbroken curves) and 6(90 ° )

(ranEe defined by the dotted curves).

Key: a. Exponent
b. Index

2.4. Rational Values for Index_of Refraction and Exponent of
Law of Distribution

92

Each of the comparisons which have Just been made result

in definition of an index and exponent range yielding compatible

experimental data and theoretical values. As shown by Fig. III.6,
these ranges possess a part in common in which all the criteria
used are simultaneously met. Thus the combined values for the

index and the exponent which may be considered rational are

defined. One may _ute that the exponential values (from -3.8 to

-4.2) are In agreement with the values furnished by a direct
particle count (cf. introduction to Part 2) and also that the

index values derived In this way, ranging 12 from 1.02 to 1.05,

12 It may be noted that the central value of 1.04 is the value per-

mitting the widest variations in the exponent within the com-

patibility range. The examples given below, however, corres-

pond only to cases in which the index is [contlnu_don following

page]
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Fig. III.6B. Reproduced from V. I.

Mankovskl (1971). Scatteringlndlca- _

_rices plotted in normalized values
_(e). The measurements were made in the

North Atlantic.

appear to be rational.
In reference to this

last point, H. R.
Gordon and O. B. Brown

(1972) recently con-

cluded that the In-

dlcatrices determined

by G. Kullenberg (1968)

in the Sargasso Sea

may be correctly in-

terpreted if the

index is given a value
of 1.05 to 0.01 i. By

a very different
method based on the

selectivity of scatter-

ing, J. R. Zaneveld
and H. Pak (1973) have

computed relative in-

dex values approxi-

mately ranging from
1.02 and 1.04 for

particles from both
surface and deep layers

(3000 m). It should be added that there is no single solution;

various index and exponent combinations result in proximate and

acceptable Indicatrlces, taking into account th= variability of
the experimental Indicatrlx. A few examples are given below.

Lack of information on the physical limits of the population to

be used in computation makes it necessary to examine the influence

of these limits on the preceding conclusions.

2.4.1. Comparison of Indicatrices

Comparisons may be made at all angles by plotting the Indl-

catrices computed within the previously defined conditions. A few

examples are furnished below (Fig. III.7); the mean experimental

indicatrlx is also given, plotted on the same scale, with
tabulated values for the normalized coefficients (cf. Part I).

Other examples of theoretical curves, including cases falling out-

side the range of rational values, are given elsewhere in more

complete form (A. Morel, 1973).

Optimum agreement is obtained when the exponent is assumed

equal_ -4, the index being 1.05; under these conditions it is
virtually impossible to distinguish the experimental curve from

the theoretical curve. This agreement, which remains satisfactory

/4__29

/5__A0

12
(cont.) assumed equal to 1.02 or 1.05, taking the preliminary

individual Indlcatrlx computations into account (Section 2.2,

Part 3).
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Fig. III.7. Theoretical indlcatrlces computed for the
indices, exponents and limits indicated, are plotted in

unbroken lines, with the decimal log of the normalized

coefficients 8(e) given as a function of e. The dots

and crosses correspond_to vertlcally and horizontally

polarized components, Sl(e) and 82(e), respectively.
The experimental Indlcatrlx is shown in an identical

manner. It is also shown as a dotted llne in the pre-

ceding figures. "Efficiency" is an abbreviated nota-
m

tlon denoting the mean efficiency factor Q, whose

computed value (equation 3.2, Part 2) is indicated for
each case.

Key: a. Index

b. Exponent
c. Limits

d. Efficiency

for neighboring index and exponent values, pertains to an Indlca-

trlx in natural light. Two observations should be made on thls

subject:
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a) agreement between experimental and theoretical values for

the total intensity B(e) does not necessarily entrain agreement

between values for the two polarized components. For example, if

n z 1.05 and m s -3.90, and if n z 1.02 and m _ -4.20, the com-
puted values for _(0) are virtually identical, but the polarization

is much more pronounced in the second case (it becomes total at

90 ° with the exception of 10-3). This problem will be examined

in greater detail later on (Section 4).

b) referring to Fig. 111.6, it may be noted that three

criteria out of four may be met when the index has higher values
and the exponent has lower values (in absolute values). Taking

an Inde_ of 1.10 and an index of -3.3 as an example, one obtains
a curve 31 which compares satisfactorily with the experimental in-

dlcatrlx, with the obvious exception of the small angle range.
The theoretical ratio B(lO°)/B(2 °) (O.lO1) is 2 to 5 times as

large as the experimental ratio, and the gradient within this

range of angles is too slight.

This second observation once again points up the usefulness
of the criterion given by the ratio B(10°)/B(2 °) for indirect

determination of a mean particle index.

2.4.2. Initial Observation on the Rational Limits of Distribution

Theoretically there will be coherence between experimental

results relative to particle distribution and to scattering, on
condition that the index of refraction is assigned certain values

and that these values appear reasonable. However, in order to

arrive at this ccherence, it was necessary to construct another
category of hypotheses pertaining to the values for the two

limits; consideration should be given to whether or not these

limits make the conclusions doubtful. The possible effects
are examined in turn:

Upper limit: Since the value assigned to this limit has

very little influence on the shape of the final Indicatrlx,

except at an angle of 0°, results on the validity range obtained

without use of the value at 0" remain in force. The specific

case of a 0° angle will be examined later on (Section 3.1.3),
as will the problem of polarization (Section:3.3), whose assigned

value at this limit is a determining factor, as will be seen.

13
By abstracting the maximum around e _ 85 ° , whose position is

dependent on the value of the index (Part 2, Section 2.2.5)

and whose amplitude increases as the exponent decreases in
absolute value.
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Lower limit: When truncation 14 progresses toward increasingly /5__i

high sizes, the asymmetry of the indicatrix becomes more marked

(due to a decrease In scattering first at large angles, and then

at increasingly small angles; cf. Part 2, Section 3.2.2). Of

the ratios chosen to serve as criteria, the first to be affected
is B(140°)/B(IO°), and then B(90°); B(44 °) is affected only if the

lower limit aM exceeds 5; finally, B(10°)/B(2 °) or _(4 °) are not
affected as long as am remains less than lO (cf. Fig. II.12).
Under these conditlon_, the ratio _(140°)/B(lO °) being decreased,

no matter what the index and the exponent may be, the curves

showing the variations in these factors (Fig. III.4) all approxi-

mately undergo a translation of more than one order of magnitude,

if am = lO. In the same manner, the curves determined for
_(90 _) are also shifted by nearly one order of magnitude. Compared

to the theoretical values thus decreased, the experimental values

could be explained only by the presence both of high indices,

greater than 1.15, and high exponents (in absolute value), greater

than 5 or 6. As a result_ the various ranges shown in Fig. III.6

will be separated with the use of these new hypotheses, and they

will no longer have a part in common. It thus follows that it

is impossible to calculate an indicatrix capable of taking into

account experimental values for all ranges of angles simul-

taneously.

In conclusion, the coherence noted previously has also dis-

appeared. In order to preserve this coherence, the lower limit

am of the computations must be set at a value not greater than 1.

Although this argument could not constitute an irrefutable proof,
there Is every reason to believe that this is the case in

reality; one need only assume that the law of distribution es-

tablished experimentally for particles as low as 1 _m in diameter

can in fact b- extended to particles O.1 _m in diameter.

3. Other Conclusions and Applications of Theoretical Computatlons

The first contribution of theory was to show that the

general shape of the indicatrix is satisfactorily explained by
granulometric data, by means of certain hypotheses whose likelihood

has be_n demonstrated. Theoretical analysis also gives an

indication of other consequences In regard to the different roles

whAch the various classes of particles would play in scattering,

_ome classes having a predominant role (Section 3.1). This idea

of "effective" classes is essential in approaching the problem

of spectral selectivity and in facilitating its interpretation

14
Or an effect equivalent to truncation, if the distributions are

to be extended to small sizes by means of log normal or ex-

ponental laws rather than Junge laws (cf. Section 3.2.5,
Part 2).
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(Section 3.2). There will be a special examination of the prob-

lems regarding polarization which have Just appeared in comparing

the theoretical and experimental Indlcatrlces. Finally, the
relationships between particle content and scattering are examined

from a practical standpoint in the form in which they may be
determined theoretically (Section 3.4).

3.1. Different Roles of Various Classes of Partlcles

3.1.1. Case of Total Scattering

In the case of a population of particles following a con-

tinuously decreasing size distribution, that is, in a case in

which it is impossible to determine an average size, nevertheless
there may be a class of particles playing a predominant role in

the scattering phenomenon. This arises from the factors ex-

amined in Part 2 (Section 3.2.3) leading to determination of the

range of validity of computations. It was seen that "small"

particles, although numerous (and even in infinite numbers) may

show finite and low total scattering because the efficiency factor

Q is low; inversely, "large" particles, for which Q is constant
and equal to 2, are too few in number according to the laws of

distribution to be able to have any notable effect on total
scattering. Between these two extremes there thus exists a

favorable case, that is, a category of particles which are
basically responsible for scattering due to the fact that both

their number and efficiency are sufficiently high. To determine

the size of these particles one need only consult Fig. II.15,

which gives, for various exponential values, the value for the

parameter 0 corresponding to a given fraction of the total
scattering (this latter factor being computed for particles with

sizes ranging from 0 to infinity. These values may be presented
in another manner which more explicitly reveals the dominant

role of certain classes of particles. Thus Fig. III.8 gives the

values for p corresponding to given fractions of the total scat-

tering (1%, 5%, 10%, 50%, 90%, 95%, 99%) as a function of the

exponent.

All these curves tend toward infinity for an exponential

value of -3, since with this value and with a theoretically un-

limited population, scattering itself is infinite. On the other
hand, for other values it may be seen that most scattering (90%,

for example, which corresponds to the band delimited by the
curves for 5% and 95%) is instigated by particles belonging to

the intermediate range: as an example, if the exponent of dis-

tribution is -4, particles with a diameter of between 0.4 and

20 _m are responsible for 90% of scattering, and those with a

diameter of between 0.6 and l0 _m, for 80% (diameters computed

assuming an index of refraction of 1.05 and a wavelength of 419 nm).

Table 3.4 gives these values in a more complete manner, also
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including the values for p corresponding to 50%. These latter
values to some extent define a median class with regard to scat-

tering: the sum total of particles of larger size than those in
this class and the sum total of particles of smaller size also

contribute to scattering. As may be predicted (Part 2, Section

3 .2.5), the law of normal and exponential laws of distribution
result in a narrower size interval for an identical fraction (80%)

of scattering.

F---r ! i ! !

Fig. 111.8. As a function of the

exponent, values for the parameter

p corresponding to a given per-
centage of the total scattering.

The latter is computed for an un-

limited population and is thus at

its maximum possible value. The

scale for the a parameter corres-

ponds to a value of 1.05 for the
index of refraction.

Key: a. Exponent
b. (If n = 1.05)

Other conclusions may /5___2
be drawn from Fig. III.8.

Thus, for example, the
fact that small particles
are not accessible to

experimentation and par-

ticularly to counting does

not make it impossible to
calculate scattering, since

an upper limit for error

may be assigned. Along

the same lines, although
it is acknowledged that

the power law is not

extended to extremely small

sizes and that naturally

particles do not decrease
in size and increase in

number ad infinitum,

abandonment of this hypo-

thesis has very little

effect on the results; the

position of the curve for
I% sets the order of magnitude
of this effect. Results

obtained with other laws

of distribution confirm this

point.

Furthermore, the total

scattering coefficient which

comes into play in the

phenomenon of light pene-

tration into the sea, that

is, into an infinite

medium, is probably greater
than can be measured with

a device for which the

scattering volume is limited.

In this case, large particles which produce an intense and
erratf signal are not included in the measurements. However, it

is rea_ able to assume that the change in scale corresponds to an

Increas_ in the coefficient of only a few percentage points.

/
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TABLE IV. VALUES FOR p* CORRESPONDING TO 10%, 50%
90% OF TOTAL SCATTERING

 on_ents
i0 % l,h2 l,Oh 0,78 0,60 O,h2 C,22

.50 % 5,60 3,80 3,01 2,1_6 2,10 1,2290 % 317 h8 19 10,2 6,6 h,3

-3,h -3,6 -3,8 -h,O -h,2 -h,5 OLt* EX,

1,20 1,79

2,70 3,20

9,50 8,1

J

* If n = 1.05 and k i 419 nm, the diameter (in m)

is numerically equal to p.

** The last two columns correspond to values for p

in the case of gaussian-logarlthmic distribution

and exponential distribution, respectively,
equations for which were given in Part 2

(caption for Fig. II@16). These distributions are

to be compared to the power law distribution with

an exponential value of -4.

iJ

3.1.2. Case of AngularS_catterin_ Coefficients

The preceding conclusions may be generalized in order to
consider the case of angular scattering rather than total scat-

tering. The concept of a dominant class of particles remains,
but the limits or the median value for this class will vary with

the angle considered. The progressive values for the intesrals

giving the angulal _ coefficients (Part 2, Fig. II.12) make it

possible to determine the value of the parameter a for which the

scattering coefficient reaches a given fraction of its final value
(considered to be asymptotic). It may immediately be seen that

at large angles (e = 90 ° to 180°), the greater part of scattering

is due to small particles, since the asymptotic plateau is reached

at a very early stage; inversely, larger size particles will

become more effective in scatter_ at small angles. Ib may thus

be stated that each part of the indicatrix preferentially

represents a given class of particles_ the smaller _ngles corres-

ponding to larger particles. Fig. II.12 also makes it possible

to predict that these classes will cover a size interval which

will be all the greater as the initial gradient of the curves

becomes more slight, that is, as the exponent increases (in ab-

solute value). The class is enlarged in this way by lowering the

lower limit and shifting the effectiveness towards smaller size

particles.

In order to situate this class in the size scale, it is con-

venient, as previously, to make use of a median size (this is the

value a at which the angular coefficient considered reaches 50%

of its final value). Fig. III.9, based o_ an index of refraction

I00
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of 1.05, shows the variations of this median size with the expo-

nent for various va_ues for the scattering angle e. The
median size varies approximately in a ratio of 30 when the scat-

tering angle e changes from 140 ° to 2°; the value of this ratio

is affected relatively little by the value of the exponent, at
least if it is less than 3.70. The median size corresponds to a

diameter of 0.1 _m (if _ - 419 nm) for scattering at large angles,
90 ° or 140 °, while the class of particles centered at 3 or 4 Mm

constitutes the dominant class when scattering occurs at 20.

/5__!3

By now fixing the value of the exponent, it is possible to

determine the "effective" class for each angle more accurately

than by its median point. For this purpose, it will be necessary,
for example, to limit this class by a values for which the angular
coefficient considered reaches 10% and 90% of its final value

respectively. This is schematically illustrated by Fig. III.10

(the diameter scale is derived from the _ scale, letting k = 419 nm).

| • !

O.

a I:XPOSANT oA I I.d.O -25 -$.0

Fig. 111.9. As a function of the

exponent and for the scatter-

ing angles indicated, m valaes

corresponding to median size
(size for which the angular
coefficient considered reaches

50% of its final value, when

= 200). The index ^f refrac-

tion has a value of 1.05.

Key: a. Exponent

In regard to distribu-

tion according to a power

law (exponent -3.90 for this

example), the effective

class gradually broadens and
shifts towards smaller

particle sizes as the

angle e increases. It may

be noted that particles
with a diameter of less than

1 _m are responsible for

almost all scattering at 140 °
or 90°; it may be noted

that these particles are

relatively inaccessible to
experimentation. On the

other hand, the dominant

role is played by particles
of 2 to 5 _m in the case or
scattering at 2°. If another

wavelength is considered,
these values must be modi-

f'ied proportionately, since
the classes are defined

in relation'to _; thus

the preceding diameters must

be doubled if the waveXength
itself is doubled (838 rim). This problem, which is directly

linked to tlle problem of selectivity of scattering, will be taken

up in more detail later on (Section 3.2). The results are fairly
different with the gaussian--logarithmic distribution con3idered.

The preferential effect is less marked than it is in the case of

Junge distribution. This may be seen since in relation to the

I01
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Fig. III.i0. The ends of the rectangles correspond to
a values for which the volume scattering function

considered has reached 10% or 90% of its final value

(that is, 100% when a = 200). The median size is

marked with an asterisk. The upper part corresponds to

computations with a -3.9 power law, and the lower part

_o computation with the gausslan-logarithmlc law for

which the equation has been given (Part 2, Fig. II.l¢).

Key: a. Exponent
b. Index

c. Geussian-logarithmic
d. (if ...)

latter, the initial di_trlbutlon tru,_cates the population for

small and large sizes to some extent, and consequently brings

intermediate particles into a more dominant role in scattering;

this is a consequence of the phenomena noted esrlier (Part 2,
Section 3.2.5).

3.1.3. Speclfic Case of the Angle 0°

The prcceding discussion has net been concerned with scat-

tering at 0°, and more generally, with scattering at extremely
small angles. When the ccmputatlons are performed for a popula-

tion whose exponent is less than 5 in absolute value, the integral
giving the value for the scattering coefficient at 0° does not

converge (cf. Part 2, Section 3.2.1). This absence of any

asymptotic value makes the definition cf an effective class for

this angle arbitrary; more exactly, by ext_,nslon this class will

always consist of the largest particles, that is, to the last
particles taken into account by the integral. However, a few

useful concepts may nevertheless be drawn from theory. In

figures such as _I.12, which give the progressive values for the

integrals:
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the curve for 0° continues to increase with a gradient of 5 - m,
while the curve for 2° , on the other hand, begins to form a

plateau for a value a 2 for the parameter m, a value which varies
with the Index 15, and is on the order of 40 if, for example, the

index i_ assumed to be equal to 1.05. Thus it is immediately

possible to determine what the size of the largest particles

present must be, for which the ratio i(0°)/i(2 °) has a given

value k; this value is:

(ao / a2;>'m _ i(O °) / i(2 °)
=k

An attempt may be made, at least in an approximate manner, to

apply this equation to the measurements made by T. J. Petzold
(1971). The results obtained by this investigator deal with an

angle of 0.1 ° rather than 0°. The ratio between i(0.1 °) and
i(2 °) is on the order of 102; assuming the ratio k to be on the

same order (and giving the index of refraction a value of 1.05),

one thus will have: (ao/40)5 - m = l02, which results in:

so = 4000 if m = 4, or so = 862 if m = 3.5. Although it is only
approximate, this estimate nevertheless shows that the upper

limit of the integral must be increased to well beyond a = 200

in order to deal with experimental results obtained at extremely

small angles 16.

This also points up the relative but poorly defined nature

of the indicatrix within this specific range of angles, since its

shape probably depends on the spatial scale considered. Thus
the indicatrix to be used in computations for long-distance

transmission, or the indicatrix which may be derived from the
transfer function of spatial modulation (W. H. Wells, 197n) might

show a more "pointed" lobe than would an indicatrix determined with

the use of an experimental device using a shorter optical

t_aJectory. Simple geometrical considerations show that this
conclusion is not contradictory to the fact that the total scat-

tering coefficient increases Very little as the scattering volume
under consideration increases (cf. Section 3.1.I): when large

particles are brought into consideration due to a change in

scale, this front 10be, becoming increasingly pointed, also be-
comes increasingly narrow. It may be seen by extension that in

this case particle scattering is complemented by scattering due to

/5_ 4

15

16

As was seen earlier, this value for a should be such that the

parameter p = 2_(n - l) is equal to 4.1 (Part 2, Sections
2.2.4 and 2.2.7).

Except perhaps for problem_ related to transmission of images,

this capacity for prediction of results makes it relatively

futile to extend the computations to a > 200, a procedure

which is very tlme-consumlng, even with a fast con_uter.
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heterogeneltles in the index which this time are on a macr'-
scopic scale, as are the fluctuations which produce them.

3.2. Dependence of Scatterlzg on the Spectrum

For a particle population whose distribution follows a law of

crenelated type, which at least in practice amounts to distri-

bution following normal or log normal laws (cf. Part 2, Section

3.2.5), there is no theoretical difficulty in computing the

spectral selectivity of scattering, since there is no problem of
limits. For a distribution determined in relation to the true

size (diameter), modification of the wavelength results in an

inversely proportional modification of the relative size _,
and also of the parameter D _ 2a(n - 1). This change simultaneous-

ly affects the quantity to be integrated and the limit of integra-
tion in the equations giving the mean efficiency coefficient Q or
the volume scattering function (equations 3.2 and 3.3,

respectively, Part 2). Whether Q is computed with the parameter

or with the parameter p in order make use of the approximate

Van de Hulst equation (2.29), it is always necessary to assign
a value to the index of refraction.

It is simple to predict the scattering selectivity (total)

for a population whose polydispersion is relatively slight. This

selectivity depends on the size on which the distribution is

centered and, at the same time, on the value given to the index;

that is, the computations must be performed taking into account

the parameter p and the value assumed by this parameter at the

average size. Referring tc Figs. II.10 and II.11 in Part 2,

one may see that if the average size is such that at X, the change

in wavelength always has values less than 4, scatterirg will be
selective with a negative exponent, that is, with X-x. If as

p varies with X it remains extremely small, x will be equal or
close to 4; if p remains between 0.1 and 2, x will be on the order

of 2, and then will become less than 2 and will tend towards zero

as p approaches 4. Finally, if p varies between 4 and 7 due to

the change in wavelength, an inverse of this selectivity will be
the result, that is, one expressed by a X+x law. All this can

immediately be deduced on the basis of the undulations in curve

Q(p). To conclude, if _ always remains high, the selectivity will

be virtually zero. If the polydispersion of the population is no

longer slight (if, for example, with distribution according to a

log normal law, the geometrical standard deviation is relatively

large), the preceding selectivity factors may still occur, but

due to the effect of the mean deviation, they will become

increasingly attenuated as the distribution becomes more

p olydispersed.

Applications for these principles have been sought in

oceanographic optics, partic_,larly by W. V. Burr (1955, 1956).
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The governing idea of the interpretation sought conslst_ first in

assuming that the distribution is gausslan-logarlthmic, and then

in centering the maximum of this distribution precisely within the

range where p is less than 4, in order to obtain selectivity in

conformity with that found experimentally; for this purpose, it
was necessary to use a fixed index. The main drawback of this

approach is that it yields a result which, first, presupposes the

existence of a distribution maximum, and second, makes the value

assigned to the index depend on the position of this maximum.
Thus Burt obtains maximum numbers of particles for diameters

ranging from 0.6 to 1.2 _m which, for example, would be 1/lO the
size obtained if the index had been assumed equal to 1.015 rather

than 1.15. If one refrains from making any hypothesis on the

limits of the distribution and the existence of a maximum, one
is confronted with the problem of determining whether the theory

remains practicable and whether or not a given selectivity is

rational. In addition, the influence of the choice of index
should be examined given these new conditions.

3.2.1. General Case: Selectivity in the Case of an Unlimited

Jun_e Distribution

This a-m distribution is assumed to extend to all particles
17 'ranging in s_ze from zero to infinity ; although the index of

refraction is not stipulated, it should remain constant within

the wavelength considered, so that for a given class of particles,
variations in the p parameters are not due to variations in k.

The follow_ng reasoning may be used: with a population which

remains unchanged, if the wavelength is modified, k becoming k',
with k' = kk (k is greater than I, for example), those particles

with dimensions which are k times greater than prevlou_ly will

play the same role in scattering. More precisely, given a class

of particles of diameter d, within an interval Ad in which the

Q factors have a given value, when the wavelength is modified,

this same value for Q may be assigned to be class of particles of

diameter kd within an interval kAd. According to the law of
distribution, the number of particles of size kd is smaller than

that of particles of size d in the ratio k-m, but the class itself

is broadened In. the ratio k; finally, the number of particles of
class "kd" is k ± - m times that of the corresponding class "d."

The geometrical cross section of these particles is k 2 times

greater, and thus the total surface area for class "kd" of size

k d is k3 - m times that of the class initially serving the same

function. Now, Q is unchanged; thus the scattering, the product

of the surface area and the efficiency factor, is itself

multiplied by k3 - m. Since this reasoning may be applied to

17 The number of particles is obviously infinite, which does not

preclude the possibility that scattering may be finite, under

certain conditions which have been discussed previously
(Part 2, Section 3.2).

105



all classes, and since all the _lasses exist, the selectivity of
scatterin_ for the entire populablon consequently follows a law of

3 - m.l_

This very simple result may appear to correspond to an ideal /5___5
case and thus be inapplicable in practice. The previously dis-

cussed concept of a "dominant" class in scattering (Section 3.1.1)

makes it possible to determine the possibilities for application

by showing the influence of hypotheses dealing with the index and

the limits. It is now possible to affirm that selectivity is not

solely a property of suspensions whose polydispersion is slight.

3.2.2. Modification in the Case of Non-Un!imlted Distribution

The _3 - m law applies to the integral f®_(_Q(_)_ 2do.
O

_v_ ._v..e_'_m_*o..,._v_are no _.._..,.... _ n_ ...-_n__, h___.rather Pm and PM, the

same law continues to apply, but another effect is added. This

consists in the fact that the value of the integral itself is

modified, since the change in wavelength results in a change in

the limits related to the diameters dm and dM rather than to p;

if k becomes kk, Pm and PM become Pm/k and PM/k. The results may
be predicted by referring to Fig. II.8, which reveals the
"effective" classes.

To take an initial example, let us assume a population of

particles extending between sizes giving p the values 0 and

PM, and let us assume that for a given wavelength _, PM is such

that _he scattering reaches 95% of its maximum possible value
(computed when PM tends toward infinity). If the wavelength is

doubled, since PM is divided in half, the integral will assume a

lower value, correspogdin_ tn qo%, for example. As a result, the
selective effect in _a - -,wili be modified sli_j-_, (_?__the

exponent 3 - m is negative, the modification is in the direction
of reinforcement of the selectivity). The opposite example of a

population for which p varies from Pm to infinity shows that
the same change in wavelength increases the value of the integral;

the selectivity will be decreased in a more or less appreciable

manner, depending on the initial value of Pm (it will always be
decreased in cases where 3 - m is assumed to be negative).

This result may easily be found _y computation using the equa-
tion giving the mean efficiency Q (Part 2, equation 3.2) and

taking 0 and ® as limits. This time, the computations need only

be performed as a function of d, n and k, ra_her than p, and by
substituting kk for k. The denominator (total area) remains

unchanged and the mean factor Q is multiplied by k3 - m when

the distribution is expressed by F(d) = Const,d-m).
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In general, it may be seen that if the particle population

broadly covers the effective classes, the law of selectivity

remains unchanged; otherwise it may be more or less affected. It

will be affected, for example, in the two following cases, even

if there is a broad range of particle size: if the relative
index is assumed to be very close tu I (resulting in low values

for p), or if the exponent of distribution, as shown in Fig. II.8,

approaches the value -3 (since in this case the concept of

effective classes tends to disappear). In practice, in conformity
with the conclusions found on the rational values for the index

and exponent (Section 2.4), that is, for example, 1.05 and -4

respectively, the dominant classes responsible for 98% of scattering

(from 1% to 99%) will possess diameters ranging from 0.1 to
100 _m (for _ = 419 nm). Under these conditions, which are

probably close to reality, a change in wavelength, with the excep-

tion of a few percentage points, will preserve the value of the

integral and thus t_e law of selectivity, which will be expressed
approximately by k-_. Numerical examples will be given below

(Section 3.4).

2 3 Shape of indicatrix and Wavelength

In practice, this discussion is related to that given in

Part 2 (Sections 3.21 and 3.2.2) concerning the influence of

limits on the result of computation of the Indlcatrix. When the

convergence conditions are met, and provided that the range of

sizes is sufficiently broad, the shape of the resultant Indica-

trix is not heavily influenced by the values assigned to the

limits, as has been seen. A change in wavelength resulting in a

change of limits will thus have no appreciable effect, except

once again for scattering in the immediately vicinity of 0° (if
m < 5). In this respect, _6. III.P r_y be considered to

represent variations in th_ indicatrix for a variation in wave-

length in a ratio of 4. (Strictly speaking, when aM changes

from 200 to 50, _m should become 0.05 rather than retaining its
value of 0.2, but this would have no influence on the results;

cf. 3.2.2, Part 2.) If in practice the Junge distribution is not

to be extended to small sizes and must be tr_'ncated, one nre-

dictable effect will be an accentuation of the asymmetry of the
indicatrlx as the wavelength decreases; this asymmetry may be

figured on the basis of the numerical values Indlca_ed
previouslyl9.

19 Cf. Part 2, Section 3.2.2, "Case in Which Truncation Occur_

for Sizes Outside the Raylelgh Range."
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3.3- Polarization

Until now, the promlem of polarization has been set aside;
it has been mentioned only when the experimental !ndlcatrlx was

compare d to theoretical Indlcatrlces. As an initial commentary

on the results yielded by theoretical computation, the following
remarks deal simultaneously with the properties of individual

indicatrices and those of indlcatrices for polydispersed systems:

a) computations performed for individual cases have revealed

oscillations for the two polarized component il(e) and _(e) which
are still greater than for the total intensity iT(v,, where,

due to the the mean effects they have become slightly attenuated
(cf.the examples given in Appendix 2). In addition, the polariza-

tion may be reversed, when i 2 ("horizontal" or "parallel" com-

ponent) is greater than i I ("vertical" or "perpendicular"
component); the rate of polarization, which is written (cf.

Part 2, Section 1.2):

p (e) -
iI (6)- i2 (e)

iI (e)÷ i2 (e)

thus becomes negative.

b) the integration procedure making it possible to deal with

the c_se of a polydispersed system of particles results in

smoothing. The normalized values relative to polarization _l(e)
and S2(e) (cf. Equation 3.3, Part 2) are not much more _rregular
than the quantity B(e) itself; the normalized values whlch persist

are probably due to th* fact that the number of terms in the

we_ghtcd addltion which replaced integration in practice is no

longer sufficient.

c) for individual Indicatrlces, polarization generally tends /56

to decrease for small and for large angles, theoretically dis-
appearing at 0° and 180 °. It reaches a maximum at 90 ° in the case

of small particles, that is, for those belonging to the Rayleigh

and F_yleigh-Gans ranges. Extension of integration to the entire
population does not result in a disappearance of the general

characteristics. It may be noted that, other things begin equal

(exponent, limits), polarization increases as the index draws

2O
As was stated in Part 2, this problem will not be considered

in its more general aspects, since only components iI and

12, and not i3 and i4, were computed in the preliminary Mie
theory computations. As a result, the polarization of scattered

light may be studied for cases in which the incident light is

natural, but not for cases in which the incident light itself

is polarized (rectilinearly, circularly, etc.).
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dloser to 121; this is the significance of thedeviationbetween_l(e) and
E2(e), especially in the vicinity of 0 .90@. As shown by

Figs. IIi.2 and III.7, the very marked minimum for  2(e) is

centered on 90" for an index of 1.02, but for higher indices, this

minimum is flatter and is located at angles slightly greater
than 90 @. Fig. III.ll reveals this fact.
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Fig. III.ll. Theoretical values

of maximum rates of polarization
as a function of index of refrac-

tion, with both population

distribution and limits

remaining unchanged (exponent

-3.9, limits mm = 0.2 and

aM = 200). The figures in paren-

theses indicate the angle e at

which the polarization maximum
Occurs.

Key: a. Rate of polarization

S.3.1;Influence of Limits

andInterpretatlon

Fig. III.2 illustrates

the effect of the upper limit:

when the upper limit aM is
raised from 50 to 200, the

Indicatrix for natural light
_(e) undergoes little

change, and the same is true
of the vertical component

Bl(e). On the other hand,
the maximum polarization
(and even the polarization

at other angles) decreases,
since the minimum for the

horizontal component 82(e)
is less marked.

Fig. III.12 shows the

opposite example of the in-
fluence of the lower limit

am. When this limit is
raised from 1.2 to i0, in

this case, as has been seen,

_(e) decreases except at

small angles, and the same is

true of the component 8-1(e).

on the other hand, the
minimum for the indicatrix

for component 82(e) remains

unchanged.

To summarize, taking the typical case of e = 90 ° , the rate of

_olarlzatlon in the first case is decreased by an increase in

82(90°), while In the second case this decrease is the result of
a decrease in 81(90°).

This may be explained by the fact that in this case the

Rayleigh-Gans range extends to relative sizes _ which may be

proportionately greater without violating the condition
< i (Part 2, Section 2.2.3).
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Fig. 111.12. Theoretical ind!-

catrlces computed on the basis
of the indicated values and

plotted using the same scales

and symbols as previously:

points for _l(e) and crosses

for _2(8). The two cases

shown here may be compared with

that given earlier (Fig. III.7),
where the lower limit was

am = 0.2, the index and expo-
nent otherwise being the same.

Key: a. Index

b. Exponent
c. Limits

d. Efficiency

Interpretation of these

effects is based on reasoning

analogous to that used for

the total intensity iT . (The
discussion will be limited to

an examination of polarization

at 90°.) A graph o_ the

functlons, ll(90@)m -4 and

12(90°)a-* reveals differences
in the behavior of these two

quantities (Fig. III_13). The

decrease in iI(90_ a-4 to which

that of iT(90)@e -4 may roughly
be transferred thus occurs

along a gradient of close to
-2.3 for this same refractive

index of 1.05. For the hori-

zontal component the corres-

ponding quantity decreases

more slowly, with a gradient
on the order of -I which

even tends to disappear for
high a values, on the order

of and greater than I00. When

computation is performed for

the entire population, the

two integrals will not converge

simultaneously (equation 3.3

and Section 3.2.1, Part 2).

The convergence will be slower

for the horizontal component
(index 2) than for the ver-

tical component (index I);

in fact, it may even be lacking,
since the condition

5 + P - m < 0 (condition 3.4,
Part 2) may not be met in the

first case (where p _ -i or
0) while it is met iX the

second (p_-2.3). This is

approxima_ly the case illus-

trated by Fig. 111.14 (where

m = 3.9); the curve representing

the progressive value of the
integral continues to increase

for the horizontal component;

on the other hand, the curve for

/5__!7

the vertical component has an asymptotic plateau.
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Fig. III.13. As a function of the

relative size a, variations in _he

functions ll(_0?)a-*, 12(90°)a-*
and IT(90°)a - with iT =

= (1/_)(i I + 12). The scales are
logarithmic. This figure may be

compared with those given in

Part 2 (Figs. II.3 and II,5) or

the analogous figure relative to
the index 1.05 !_A. Morel, 1972).

Key: a. Index

3.3.2. Conclusions; Second
'- _ Observati_.,honthe

_aiue of the Limits

Applyin_ithe preceding,in practice (90°), like

_(90o), can be influenced

only by a change in the

lower limit am, while

_2(90°), whose value is

determln_ by the upper
limit aM_ , is not affected
by this change. This is

the case shown in Fig. III.12.
On the other hand (case

shown in Fig. III.2), a

change in the upper limit

aM affects only the

component _2(90_)__9t the
exclusion of 81(90°), and
consequently _(90°); as

aM Increases_82(90 °) con-
tinues to increase and

the polarization decreases.

In short, each of these
two limits exerts an in-

fluence selectively on one
or the other of the two

polarized components.

For the same reasons,

an analogy may be drawn
between the case of

forward scattering and

rlght-angle polarization,

more precisely, an analogy
between the behavior of

8(0 °) and 82(90 o) (cf. 3.1.3): these quantities continue to

increase with the upper limit (except when m is greater than 5).

When the experimental Indlcatrlx was compared with various

theoretical Indlcatrlces, it was noted that there could simul-
taneously be satisfactory agreement for values obtained for natural

light -- 8(e) -- and unsatlsfactoryagreementfor polarization. In no way

can this lack of agreement constitute an argument, and it was not
taken into consideration in conclusions on the values for the

22
As previously, the upper limit aM must be assumed to have an

adequate value, that is, the polydlsperslon of the population
must be assumed to be slight.
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Fig. III.14. Analogous figure to

Fig. II.12 in Part 2, but in this

case based on the angle e = 90 °
alone. In addition to the curve

showing the progressive value of

the integral for the total in-

tensity (dotted line), curves

for the two polarized components

are also plotted.

Key : a. Log scales
b. Exponent
c. Index

exponent and the index

(Section 2.4). For example,
the case in which the

index and the exponent

are 1.02 and -4.2,
respectively, results in

an extremely high theo-

retical rate of polariza-

tion, which will quite

likely be reduced by

raising the upper limit,
nevertheless without any
effect on the values for

_(e), Thus the values

indicated remain rational

in spite of the lack of

agreement with reference

to polarization. These
considerations also have

a negative aspect, since
they demonstrate the

limiting possibilities
for interpretation of

experimental results.

Caution must be exercised /58

in assuming and even com-

puting a high upper
limit with regard to

polarization, as was done
in order to take into

account the scattering

observed at small angles.

The exten§ion of the curve

i2(90°)m -4 is not pre-
dictable in a simple manner

as is that of the curve for 0°; thus any conclusions on the upper

limit must necessarily remain questionable. It should also be re-

called that although the assumption that marine particles are
spherical is Justifiable for the total intensity, it is less so with

regard to polarization (cf. Preliminary Remarks, Part 2, and

Holland and Gagne, 1970).

_.4. Relationships Between Scattering and Particle Content

One of the most frequently cited r_sons for systematic

measurement of light scattering is, Justifiably, anattempt to es-

timate the concentration of suspended matter in seawater.
However, there are a number of uncertainties involved in deter-

mining quantitative relationships, both from an experimental and

a theoretical standpoint. These arise from the hypotheses which

[
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mus* be made on the mean efficiency factor Q, the index, the
extreme sizes to be considered, possibly on the weight per unit
volmme of the particles, and so forth. These problems have
already been recognized by Y. E. 0tchakovsky (1.965 b) and by
G. F. Beardsley et al. (1970), to name only two examples. It is
useful to examine the influence of these hypobheses before in-
dicating how the results of theoretical computations may be
applied, and what precautions should be taken in applying them.

3.4.1. General Observation onPosslble Varlationsin the Mean
Efficiency Fact0r _

The first problem consists in computing the total scattering

coefficient when the number of particles, counted between two

size limits, is known, as well as the la_ governing their dis-

tribution. The reverse problem consists in determining data on

the quantity of particles (volume, surface area, number) on the

basis of observed scattering coefficients. In the first case,

the amount of scattering due to the counted particles may be computed

with aDso]ute accuracy when the index is known (or is chosen);

nevertheless, the solution to the problem remains incomplete,

since the scattering which would be observed experimentally for the

same sample is a priori greater than that which is computed,
since it involves uncounted particles. The fact that "effective"

classes exist (cf. Section 3.1.1) shows that in some cases the

influence of the limits is slight; it is possible to estimate an

order of magnitude for the difference between calculable scattering

and real scattering. Solution of the reverse problem requires a
still greater number of hypotheses: those relative to the index

and the limits must be added to those dealing with the law of
distribution.

The relationships which may be determined are dependent on

these hypotheses. The method for revealing this dependency con-
sists in analyzing variations in the mean efficiency factor Q

with the index n, the exponent m and the maximum and minimum

diameters in the distribution dm and dM (or the corresponding

parameters, mm and _M or Pm and PM). For the index values con-
sidered, use of the limiting Van de Hulst equation is Justified to

compute Q (Part 2, Equation 2.29), and in this case the mean

fs.ctor, more conveniently defined in relation to p rather than m,
is written:

°M

%,
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Thus various applications may be drawn from a single computation
procedure, depending on the value assigned to the index. (By way
of review -- cf. Part 2, Section 2.2.10 -- Q must be determined
by means of the exact formulas when p is small; in practice,
less than 0.2.) Fig. II_.15 (A. Morel, 1972 b) shows variations
in Q w£_h the exponent of distributlon, the various curves
corresponding to different pairs of values given to the limits
Pm and PM"

(o.,.20) \

a .2 EXPOSANT -3 -4

Fig. III.15. Variations

in mean efficien<_ factor

Q with the exponent of
distribution. The values

in parentheses correspond

to the parameters Pm and

PM computed for the limits
of distribution.

When the exponent is equal to

-2, the surface areas of all the

classes of particles are equal,
I

and the mean value Q is actually
the mean value of the function

Q(p) (cf. Fig. II.10, Part 2),
and thus Q is close to 2 no matter

what the lower limit may be, and
provided that the upper limit is

fairly high (PM = l0 or 20, for
example). _ may be slightly

greater than 2 if the chosen in-

terval Pm - PM is small and favors
a maximum in the curve Q(p). As

the exponent increases (in absolute

value), the increasing relative

significance of the smallpartlcles
results in a decrease in Q. When

m reaches and exceeds 4, there is

little influence exerted by

particles of small size, and thus

by the upper limit aM, and in
practice, _ depends only on the
value of the lower limit.

Key: a. Exponent Finally, the factor Q may vary

considerably with the exponent,

with the limits, and consequently

with the index and the wavelength, since these parameters influence
the values of the limits. This reveals the difficulties which

emerge in practical application due to the assumptions which must

be made, while at the same time a perfect mathematical solution
is obtained.

/59

3.4.2. Examples of Application

The concrete value of these various influences may be deter-

mined by taking the example of a population of particles dis-

tributed according to a power law within a size interval limited

by the diameters dm = 1 pm and dM = 20 _m. Taking into account
the values assigned to the index and the wavelength, the values

am and aM or Pm and PM in the following table correspond to these
diameters:
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TABLE V. CORRESPONDENCEBETWEENd, _ AND p FOR TWOWAVELENGTHS
AND THREE INDICES

d(,.) . o

il_ x : _19 nm 1.05 1.10

M= 20

mm=lO

aM • 200

if X = 5h6 .m

____,: - 1.o3
Vm- _._

PM "

_ 1"I m

1,0 2.0

12 20 hO

1.03 1.05 i.I0

oM = 9.2_ !5.h 30.8

Using the e_uation reviewed above, it is possible to compute
the mean factor Q between the limits constituted by the various

pairs of values Pm - PM for different exponents for the law of

distribution. The results are given in Table 6. The percentages
indicated23 correspond to the ratio of scattering due to

particles within the interval 1 - 20 _m to the hypothetical
scattering of an unlimited population. This reveals that in some

cases, especially if a high value is assigned to the index, the
"explained" fraction of scattering is slight. In a favorable

case (_ = 546 nm, n = 1.05, m = 3.9), theoretically (and at a

maximum), 14% of scattering would be attributable to particles

with a diameter of less than 1 _m (p < 0.77), 9% to those with a

diameter greater than 20 um (p > 15.4), the scattering due to

particles between 1 and 20 _m forming 77% of the theoretical total.

This comes down to the fact that in this case the particles con-

sidered basically make up the effective classes (cf. Fig. III.8).

Fig. III.16 shows variations in the mean factor _ as a

function of the index, for the two wavelengths and for various

exponents. Fig. III.17 reveals the fact that the selectivity of
scattering depends on the exponent. The curve plotted is that

corresponding to the theoretical law applicable to an unlimited

population, that is, the 13 - m law (cf. Section 3.2.1), and the

dots repr_&ent the characteristic selectivity ratios Q419/_546 for
the limited population _ (1 to 20 _m) considered.

_3 The percentages indicated in Table 111.6 theoretically make it

possible to determine the values corresponding to an unlimited

population. Thus the values represented by crosses, which

normally should be found on the curve given in Fig. III.17, are

computed. A slight degree of inaccuracy which may be expected

in this type of computation results in an overestimate of the

percentages and explains the slight disagreement.
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TABLE VI. FOR VARIOUS INDICES AND WAVELENGTHS, THE MEAN
EFFICIENCY FACTOR Q VALID FOE A POPULATION OF PARTICLES

RANGING FROM _ TO 20 _m AND DISTRIBUTED ACCORDING TO POWER
LAWS WITH EXPONENTS AS INDICATED

X = k19 "

I
n • 1.03 I 72.3

a• 1.05 I 73.0" • 1.10 63.3

X= 5_6 am

Exlmanents

, r i i rI 1._.82 79,2 1,o89 76,9 10.92o 66,8 I o,_8o1.756 TU.T 1.626 6T._ I I.&96 5b.,5 1.37_
2.307 57.5 2,338 h6.0 I 2.355 31,3 I 2,365

n = 1.03 I 69.7 I 1.028
n • 1.05 T2.7 1.539
n - 1,10 67.8 2,171 78,3 I 0,828

77,1 1.375
6h,_ 2.168

79.3
71,9
52,0 0.663 I 72.6 1 0.533

1,222 60,h 1.086
2.111 hO.6 2.06&

!

J
I

4

i

s'"

Direct Problem: Computation of Scattering

The following example may be used in providing a practical

application for the preceding: let us assume a known total number

of particles per unit volume between two size limits corresponding

to the diameters dm and dM, that is, the number:

= _/4: _(a)a(a),

and assume the distribution to be expressed by F(d) = Ad -m. Both

the total surface area S of the geometrical cross sections and

the total volume V of these particles may be computed. To facili-

tate application, it is convenient to give the ratio of these
magnitudes S and V to the number N. One thus obtains:

and

[; " m-] d"m'3,., "dm m-3

V , m-I dMt:"h "dm m'&

"_, ''_ _ d,t:;-i,.. - (].rr_ra-1

(rl m dM)m'l

(dm dt:) m'3

0 )m-i(dn ,_

(,Jr, ,i:!)mq_",

(The first equation assumes m > 3, and the second, m > 4; if these

conditions are not met, the modified equations can easily be

found.) Replacing dm and dM with 1 and 20 um and assuming
m = 4.2, the result is that: S _ N x 2.04 _m _ and
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V = N x 5.77 _m B. Choosing a concentration _ypical of clear
water beneath the surface layer, N = i010 m- (that is, I0,000

particles per cubic centimeter; cf. J. C. Grun-Cottan, 1971,

H. R. Gordon,20. B. Brown, 1972), the result is: S = i
= 2.04.10 -2 m /m3 and V = 5.77"10 -8 m3/m3. _ (It should be noted

that if a density of 1 is assigned to the particles, this concentra-

tion by volume corresponds to 57.7 _g/liter.) Assuming an index

equal to 1.05, using the values for _ given in the preceding table

one may compute the _ota_ scattering coefficient b = S x Q, that is:
b419 = 3.05 x i0 -_ m-_ and b546 = 2.49 x 10 -2 m -I.

Referring to Fig. III.8, it may be seen that these coeffi-

cients computed for particles from 1 to 20 wm in size could be

15 to 20% smaller than the experimental coefficients, which 24
theoretically correspond to a broader population. In this manner

assuming the index to be equal to 1.05, scattering coefficients at

546 nm have been computed for samples from the Mediterranean whose

granulometry was established by J. C. Brun-Cottan (1971); the

complexity of the computations are slightly increased due to the

fact that, in general, two efficiency factors must be computed

for each population, one between 1 and 4 wm and the other between

4 and 20 _m. Measurements of the angulai, coefficient at 30 ° ,

B(30°), had be_n performed for the same samples, and from these

it was possible to determine (cf. Part I, Section 6). Moreover,

these values for b are in excellent agreement with those obtained

in situ by means of the integrator (D. Bauer, A. Ivanoff, 1971).

The computed coefficients are compared with the coefficient deter-

mined on the basis of the measurements (Fig. III.18). The

agreement is fairly satisfactory for the measurements made in
November 19_, but it is less so for those made in June 1969,

especially for the samples taken at a depth of I00 to 400 m (an
index of 1.03 would be better suited to check these measure-

ments).

Reverse Problem: Utilization of Scattering Measurements

Three hypotheses are necessary to solve this problem. Thus,

as an example, by choosing an index of 1.05, assuming the dis-

tribution to be governed by a law with an exponent -4 and the size

limits to correspond to diameters of 0.5 _m and 50 _m (this lower

limit corresponds to a truncation llke that approximately resulting

from filtration through an HA millipore), the following equations

may be set up, although obviously their validity is contingent

on all the reservations imposed by the preceding choices. The
mean efficiency factor for k = 546 nm is: Q(0.3) ÷ 50, 5_6) =

= 0.70 (for k = 419, its value would be 0.92). The v_lu@ for
the total area of geometrical cross sections is: S(mL/m _) =

= b(m -I) x (1/0.70). From the equation giving S/V, the following

24
But without correcting for the 15 or 20% which remains doubtful.
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Scattering at 419 nm

to scattering at 546 nm,

o- ,, , , revealing selectivity
IgO 1.05 1.10

INDICE b

Fig. III.16. Variations in the ef-

ficiency factor Q as a function of
the index of refraction for the two

wavelengths indicated. Q is com-

puted for a population of particles
whose extreme size limits are 1 um

and 20 _m and whose distribution is

governed by power laws with the
exponents indicated.

which varies with the

exponent of the law

of distribution (see
text and observation

in Section 3.4.2

above).

Key: a. Exponents
b. Index

I

may be drawn: N(m-3) = 1012 x 1.715 S; from the equation giving

V/S (which becomes V/S = 1/3 log 100, since in this specific case

of an exponent of -4, the _ntegral yielding V is a logarithm),
one obtains V(m2/m 3) = 10- x 1.535 S.

If, for example, one wishes to compare the results of a

scattering measurement which with those of a particle count

performed between 1 and 20 _m, and also the results from a filtra-

tion assumed to be effective between the _izes 0.5 and 50 _m,

it is advantageous to know the distribution of the number, surface

area and volume magnitudes among the three classes, from
0.5 to 1 _m, 1 to 20 _m and 20 to 50 _m, respectively. Let us

assume that measurement of b at 546 nm yields the value 0.07 m-l,

for example; the total geometrical cross sections are thus
0.10 m /m_, and for N, S and V, one will have the following

distribution expressed as a percentage of the total:
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clms_

0,5 _ lure

x (a"3) 87.PI
s (=2/a3) 5z_

V (m3/m 3) 15.0_

class I " class

i --20 um J 20-- 50 Um

12.5_ • 0

6p,o_ 2o_

tot_
0.5,,y _oum

17,15.101°

0.10

15 h. 10 -9

The relationship between b and V (b in m-I = 0.455-10 -6 V,

which is in m3/m3) is shown in Fig. III.19, which also shows the

diffusion coefficients determined for the same samples (see

also Fig. 6, A. Morel, 1970) _s a function of the dry weight
particle concentrations (I0 -_ g/g, that is, in _g/liter). It

appears that the ratio between dry weight and theoretical volume

is much lower than l, which in any case would be explained by

]O-!

b (-,")
colcul@

C

• " I' '" ' • ''I i '/
J

a oo

|OUE| L_BORATOIRE

.,. t/• Nov.

°°y
@/ @ @

i0-_ i_ _

expc6menlal

b (m "T}

a . I._

Fig. III.18. Scattering coefficients

computed from granulometric data,

compared to measured coefficients

(see text). Bou@e Laboratory.

Latitude - 42°14 N, longitude =
= 05035 Z.

Key: a. Boule Laboratory; b. June
1969; c. Computed

marked hydration of the

particles. A more precise
determination would be

futile, first because

the relationship has been
determined on the basis

of mean parameters (index

and exponent), and second,
because the filtration does

not produce a sharp
truncation (at d = 0.5 _m),

but rather a progressive

truncation which may also
be variable. Thus the

retention efficiency of
G. F. Whatman filters

would decrease from 100%
to 40% between the diam-

eters 4 _m and 0.7 Pm

respectively (R. W.

Sheldon, W. H. Sutcllffe,

Jr., 1969). This fact

should not be forgotten

in comparing dry weight
measurements either with

each other or with

scattering measurements,
especially if one assumes

that a large fraction of

the particles by weight
and volume is located in

the small size range.

According to Lislt n

and Bogdanov (1968),
40 to 60% of the particulate
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mass consists of particles smaller than i _m in size, which with
an exponent of -4 could be extended to diameters of 0.02 _m;
with this exponent, there is logarithmic equipartltlon of volumes,
and thus, for example, the two classes 0.02 to i _m and 1 to 50 _m
have the same total volume.

o
o

I

Fig. 111.19. Dry weight of particles retained by

G. F. Whatman filters (measurements performed by

G. Copin) compared to scattering coefficients

measured -- using 8(30) -- for the same samples.

The Atlantic measurements were made as part of the
Harmattan series (1971).

Key : a. East Atlantic (equatorial)

b. Medlterranean (BouLe Laboratory)
c. Theoretical

d. Dry weight)

Conclusion

In dealing with findings which are virtually based on the natural
sciences, it would be futile to try to find complete agreement

between experimentation _nd theory, which Is necessarily simplified.

On the other hand, it Is useful to construct a fairly simple
theoretical model which can still constitute a valid

/62 •
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approximation of a complex set of real conditions. Experimental

deviations may thus be interpreted by comparison with thls model.

For thls purpose, the influence of various factors must be brought

out wlth some _egree of clarity; thls explains the impor-

tance assigned to the chapter of thls work dealing with these

factors, and the earlier chapter dealing wlth the properties of
individual indicatrices.

Thls aspect of research, which facilitates prediction to some

extent, nevertheless Is not always indispensable. For example,

in atmospheric optics, DeirmendJian (1969) found little neces-
sity of dealing wlth this subject due to the fact that

experimental data on sero_ols are more complete. Thls Is not the

case in ocea_ogr_phlc optics, where virtually the reverse problem
is presented: that of obtaining information on suspended

particles which Is lacking, or at least to permit an investigation

of these particles by optical methods, which are fast and reliable,

but which furnish results whose significance must be demonstrated.

Despite its limitations, the model provides information on

a large number of properties. The shape of the calculated

indicatrlces is compatible with information on the particles which
has already been obtained; simultaneous study of scattering and

granulometry would permit a more precise determination of the

effective index, that is, something of the nature of the particles

and especially the state in which they occur. The intensity of

the phenomenon of scattering and its spectral variations are

given a satisfactory interpretation leading toward possible

applications. For some of these applications, simultaneous

measurements of all the parameters -- granulometrlc, chemical

and optical -- remains highly desirable, since theory is

the least problematic area, especially since It can easily
be perfected.

Dedicated to the memory of George F. Beardsley.
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APPENDIX i: DEFINITIONS /6__3

The Committee on Radiant Energy in the Sea of the International

Association of Physical Oceanography has defined the magnitudes

and fixed the terminology for oceanographic optics (Proceedlngs

of the UGGI [Union G_od_sique et Ggophysique Internatlonale],

No. 57, 1964). A proposal for translation into French has been made

subsequently (A. Ivanoff, A. Morel, 1970). A number of magnitudes

for description of scattering properties have been defined.

In scattering theory, other magnitudes are u_ed. These are
not defined on the basis of an elementary scattering volume as

previously, but by considering scattering due to a single particle
and its interaction with the electromagnetic wave. These magni-

tudes should be related to the preceding magnitudes, which

were purely phenomenological. The definitions given correspond to

the most frequent experimental case, in which the incident light

is natural, the scattered light generally being polarized. However,

the immediate generalization of these definitions is indicated at

the end of the Appendix. These definitions correspond to cases

in which the state of polarization of the incident wave is random

(cf. Sections i.i and 1.2, Part 2). Finally, it should be noted
that the French and English terminology for these magnitudes used

in theory has not been systematized; the terms given here are

those which appear to be the most frequently used.

Magnitudes Defined b_. the Committee on Radiant Energy in the Sea
(AIPO)

These magnitudes are defined by considering the case of a

fine beam of monochromatic light consisting of parallel rays. The
relative loss in flux dF/F for this beam is proportional to the

path lengths dx considered to be elementary, the coefficient of

proportionality being the attenuation coefficient c:

dF 1
c ---F- a-£"

The loss in flux occurs due to the combined effect of absorption

and scattering: c = a + b, where a is the absorption coefficient
and b the total scattering coefficient. As a result:

d F (abs) i d F (diff) i

• " " r dx ' and b - - F _ '

where dF (abs) is the flux s_btracted due to absorption, and

dF (diff) is the flux subtracted from the flux normally transmitted

along the direction of propagation of the beam, which is actually

dispersed in space.
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Consequently a section of the beam of length dx and volume
dv = S dx, seen from a relatively long distance, behaves as a
point light source with its dlrectlon making an angle e with the
initial direction of the beam, and with an intensity of dI(e),
proportional to the volume scattering function B(e):

1 l

e (e)-a i{e)_
1 1

or e ¢e)-d. iCe)_ _ ,

E being the illumination on the entry face of surface area S of

the scattering volume dv (E dv = F dx).

In most cases in oceanography, coefficients a, b and c , -1
homogeneous in the reciprocal of one lengthj are expressed in m
The volume function is expressed in m-lstr -I. By integrating

the scattered flux throughout space in all directions e, one

obtains the equation:

b-_ e¢e) d n becoming b 2 _,i'"= B(e) sine de ,

_w o

if the scattering phenomenon is one of revolution around the axis of the

beam. Integr tion performed on non-elementary paths in a homo-

geneous medium (a and b being constant) results in an exponential
decrease in the flux due to absorption, scattering or both at once.

The representation of the volume scattering function B(e) as

a function of e is termed (in French especially) the scattering

indicatrix.

Other Magnitudes Used in Theory

Intensity Functions iI and i 2

I0 being the intensity of the natural (and monochromatic)
incident light being propagated in a flat wave (parallel light

beam), and I being that of the light scattered in a random direc-

tion (e, ¢) at a distance D (assumed to be large) from the

particle, one may state

k2D 2
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F(e,_) is a dimensionless function in the direction indicated by

two angles e _nd _ k is the wave number k = 2_/_; k2 should be
homogeneous at L-_ If the phenomenon is one of revolution, as

in the case of the spherlcal particles considered here, a single

angle e comes into play, measured between the direction of propaga-
tion of the incident wave and that of the scattered wave under

consideration; these two directions define the "scattering plane."

The incident light being natural, the scattered light is

generally polarized, and the following may be written:

iI (e) + J'2 (e)

1

where il(e) and i2(e) are the intensity functions.

These are dimensionless quantities, obtained by finding the

square of the modull of complex amplitudes sl(e) and s2(e);
index 1 (or in some cases r, or again, _) is related to vibration
perpendicular to the scattering plane, and index 2 (or _ or =)

to vibration within the scattering plane. The ratio (i I - i2)/

/(i I + i2) expresses the rate of polarization which produces
scattering when the incident light is natural (see Part 2,
Sections 1.1 _nd 1.2).

Angular Mie Scattering Coefficient_ Scattering Efficiency Factor

This is a dimensionless number expressed in sterad -I,

defined in the following manner:

q (e) =
iI (0)+ i2 (o) I l

2 k 2 S

/64

where S is the area of the geometric cross section of the particle,

that is, the projection of the particle onto the plane of the
incident wave. If one considers the case of the spherical

particle S = _2, introducing the size parameter a = 2wr/_:

q (e) = z (i I (e) + i 2 (o))
2 _ a

which may be interpreted as the flux scattered by a particle per
unit of solid angle in a direction e related to the incident flux

on the geometrical cross section (here, _r_). Integration extended

over the entire space:

j'j' q (e)d _ = _- I" (it(e) + _'2(e)) sine de - Q
Cl o

..... ,o,, .

124



, ....;,.L, JZ.: __JJJJl ....... "_"-" ....

yields the number Q, the scattering efficiency factor: this is
the ratio of the total scattered flux to the incident flux on

the particle.

Effective Cross Section and DifferentialCrOssSections

The differential (or angular) cross section for direction e

is defined by:

_2
s (e)- s qCe)= -- (it(e)+i2(e))

8.2

the dimensions are L2 the unit m2sterad -1.

furnishes the effective cross section S:
Integrating over 4_

_2 ,, _2 2 that is s = wr2Q,
• s1[_w o_ (iI (e) + i2 (e)) sin@ d O - _ Q

for the sphere, and more generally:

of the geometric cross section.

s = SQ where S is the area

Volume Scattering Function_ Total Scattering Coefficient

The sum of the differential cross sections, relative to e,

of N particles contained in the unit volume constitutes the volume
scattering function. When the particles under consideration are

spherical, and when in addition they are of identical radius r,
one may write:

B (e) =H • (e) •_. r2 q (e) , 6(e) •N--2 (q (e) +i 2 (e))
8 2

N has dimensions of L-3, 8 has dimensions of L-I and the unit will
be m-lsterad -1.

This is the ratio of the flux scattered in direction e per

unit of solid angle to the incident flux, the volume scattered

being unity. Extension of the integral to the entire space

yields the total scattering coefficient b:

b- /I _(e)d_ -2_ _(e),i_0 de . (b-_.r2Q for spherical
.... particles)

the ratio of the total scattered flux to the Incident flux on a
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unit volume; the dimensions are L"l, the unit m-I. If the
spherical particles are not of uniform size, the result will be:

j"

mD

I (e) - I n(r) ,r 2 % (r) dr , with S n(r) dr - N
o o

I

and b-[ n (r),r2Q(r) _ .
o

Phase Function and Normalized Volume Function

by :

il. _ i 2

: PI (e)'_ and P2(e) -_ .
Qa Qa

The phase function Is also a dimensionless quantity defined

i_ (e)+ i2 (e) One also defines:e(e)-_, q(e) . 2
q 2 "

@

For a single particle: P(e). _.'(e)
S

for a scattering volume:

_W

ff P(e)- l,_.

b ; and in all cases:

It is more convenient to use the normalized volume function

P(e) B(e)
defined by _(e)=-_---_-, ; as a result:

ff "_(e)a n = i . _I (e)= 2 and _2 (e)=
_Q= nQ=

I

(e)+T2 (e))

Note on Polarization

All the preceding formulas correspond to cases in which the

incident wave is natural; the more general case where the state

of polarization of the incident wave is random has been examined
earlier (Section 1.2). In this case, four intensity functions rather

than two are useful in describing the phenomenon of scattering
(by isotropic spheres):

iI " SISi*

i 2 " $2S2"

- (_I_2 + o2S _) - _eiS L/2 ....* " {sis_)

ih . i/2 tc _* . _ * {SIS;)_oi_ 2 o2S I) • -Im
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Formulas relating to the intensity and not the phase of the

scattered wave which make use only of iI and i remain unchanged:
this is the case for q(e), s(_), 8(e) and thei_ integrals.

However, using the same formulas it is quite possible to define,

for example, 81, 82, 83 and 84 wlthS- (1/2)(Sl + 82). Indeed,
some investigators define and use four normalized functions

Pl(e)/4_... _4(8)/4_. As has been stated (Section 1.2), the

equation for the rate of polarization is different in this general
case.

LIST OF PRINCIPAL SYMBOLS USED

The following llst includes symbols which do not correspond

to the magnitudes defined above. The sections and equations

(in Part 2) in which these symbols appear for the first time are

indicated in parentheses.

Particle size parameters (2.2)

an, bn _ Mie coefficients (2.2, 2.4)

aiJ Scattering matrix coeffi- (1.8)
cients

AI, A2, BI, B2

_n, Xn, _n

F(e)

F'(e)

F(d), F(a), F (p)

Complex amplitudes. The
asterisks indicate com-

plex conjugates

Parameters in log nor-

mal or exponential laws
of distribution

Diameter

Electric field components

Ricatti-Bessel and Ricatti-

Hankel functions

Angular distribution func-

tion (Rayleigh-Gans)

Distribution function

(diffraction)

Particle distribution

function

(1.9, i. II)

(3.11, 3.12)

(i.i)

(2.4 to 2.8)

(2.21)

(2.24)

(Section 3.1, Part
2)
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aCU)

Hn, Jn, Yn

iT

I, Q, U, V
or

Ii, 12, U, V

k

m

m

n

n

N

nm, _m

p and p(e)

p

Pn

Gans function

Hankel function of order n,
Bessel functions of

first and second types
of order n

(i/2)(i I + i2) -- cf.
Definitions

Stokes parameter

Wave number (= 2_/k)

Wavelength

Lore_tz-Lorenz term:
(n - 1)/(n 2 + 2)

Relative index of par-
ticle in relation to

medium in Part 2

Exponent of Junge law of

distribution beginning
with Section 3.2 (Part 2)

Order of terms in series

Relative index (cf. "m"

above) beginning with
Section 2.2 (Part 2)

Total number of particles

per unit volume

Nanometer and micrometer

Rate of polarization

Gradient of curves iT(e)a -4

Legendre polynomial of
order n

(2.22)

(Section 2.2.1,

Part 2)

(1.2, 1.11)

(Section 2.1,
_rt 2)

(2.15)

(Section 2.1)

(2.2)

(Part 2, Section

3.1.1 and Part 3,
Section 3.4)

(Part l, Sections

r and 1.7)

(Part 2, Section
3.2.1)

(2.3)
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Q

m

Q

r

Rp(e )

SI, $2

S and V

Efflciency factors for ab-

sorption, scattering,
attenuation

Mean effielency factor

for scattering

Ratio of scattering of

sample to scattering by
benzene

Characteristic ratio of

scattering by particles

Parameter2_In - _ual to

Amplitude functions (com-

plex)

Surface_area of geometric
cross sections and

volumes of particles

Scattering angle

(2.25 to 2.28)

(3.2)

(Part I, Section
4.2)

(Part i, Section
4.7)

(2.19)

(2.1)

(Part 3, Section
3.4.2)
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APPENDIX 2: COMPUTATIONPROCEDUREAND ADAPTATIONTO COMPUTER

i. Calculation of Individual Indicatrices by Mie Theory

1.1. EQuations Used

The equations (2.2) furnished by Mie theory have shown that

the complex amplitudes of the scattered wave Sl(_m,e) and

S2(_,m,e) are expressed in the form of series which at each order

combine:

-- the Mie coefficients an and bn dependent on the relative

size a and the relative index m by way of Ricatti-Bessel and

Ricatti-Hankel functions of order n (2.4).

-- the functions _ and Tn, dependent solely on the scattering

angle 0, by way of functions containing the Legendre polynomials

of order n occurring in the argument cose (2.3).

It is possible to generate these functions with the use of

recursive formulas, after setting the corresponding values at the

first orders. This computation diagram is similar to that recom-

mended by R. Penndorf and B. Goldberg (1956) and by D. DeirmendJian

et al. (1961). Recently (1969) the latter investigator has again

taken up a detailed description of the case of a complex index

of refraction. Another computational procedure using the loga-

rithmic derivatives of the Ricatti-Bessel functions (see, for

example, G.W. Kattawar and G.N. Plass, 1967) nay also be used.

Coefficients an and bn: Recurrence for Ricatti-Bessel and Ricatti-

Hankel Functions

In conformity with (2.5), (2.7) and (2.9), the functions _n

and _n' which along with their derivative are involved in coef-

ficents an and bn, are expressed by:
" 112

_n (x) • (_-_) ,Tn+li2 (x) , _n (x) = _'n (x) + i xn (x) ,
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with xn (x) -- C._ ,_I12 Yn*zla (x) .

One assumes: ¢. (.)- s (x). and xn (x) -c (x) .

Initially, these functions will be expressed solely by

Bessel functlons of the first type, using the equation:

'Yn+z/2 (x) - (-z) n÷1 a-(n+l/2) (x)

between functions of the first type J and the second type Y; thus

Sn(X) and Cn(X) will be written:

1/2

(x) (-z) _ (_-._/2J.(n÷z/2)- (x)Sm (,,). (___)wz Jn÷z/2 (x) Cn "

For functions of the first type, the following recursive

equation holds for three successive orders:

n j = + J = 2 n-_.._
2 _ n Jn-i Jn+l or n x Jn-i " Jn-2

Substituting n + 1/2 for n:

n-z/2
Jn+ll2 u 2T Jn-l/2 " Jn-3/2 or again sn (x) 2 n-____! (x) (x)• x Sn-z " Sn-s (II.IA)

Substituting -(n + 1/2) for n:

J-n-i/2 2 -n-3/2 j" _ -n-3/2 J-n-5/2

that is :
(-I)"on (x)- 2 ---;---'_'3/2(_1)n+Z 0.+i. (.z)n*_ Cn+a

Setting aside t_,;oorders:

cn (x) - 2n'-"'!Zx cn_z (x) - cn. 2 (x)
(II.IB)

an equation identical to that established for S
n

The calculations may be performed after values have been set

for the first two orders, that is:
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so(*}=(,=!_) I/_ o112 Cx) Jsin x

SI (x) • (.x12) I12 J312 {.) ,. _':nx x - COS X

Co (x) - (.x/2) 1/2 J-l/2 (x) - cos x
 ii.2)

C1 (x) "-_,X/2) 1/2 J-2/3 (x) " cos_..__Xx÷ sin x

S' and S' + IC' are alsoThe derivatives _' and _', that is,

involved in the expressions for an and bn. There is a recurslve

equation linking the derivative of the Bessel function of order

n to the functions of order n and n - 1 themselves:

x J'n (x) - - n Jn (x) + x Jn-i (x)

which, applied directly to Sn and Cn, yields the equations:

_' (x)= n s (x)÷_ c' (x)= _ (ii.3)
n ":T n _i-i . -_ Cn (x) ÷ ca.i

C
n

Finally, an will be expressed by means

and their first derivative in the form:

of the functions Sn,

• s
n

S' (z _) S n C_) --_ S (m _) S' (,,)
n n n

s'n (" ") (s (c,)+ic. ',_))-:_sn ('__) {s'n(°) ÷ic' n (a))

All the terms in this equatlon may be calculated by means of the

preceding formulas. (An analogous equation is used to f_nd bn.)

If m is real, all the functions pertain to real arguments, and in

computing a n the real part and the imaginary part may be separated;

one assumes:

]_-S'(ma) S(a)-mS(ma)S'(_) _-S'(mo) C(_)-mS(m_)C'(o) , (II.4)

making it possible to state that:
P

an p 4 lq '

and consequently:

Re (an} - 1 _ and
i 4 p'/q _

n

-p/q

1 ÷ p2/q2

m

(II.5)
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As has been seen, the result is that the image'of any an
(or any bn) within the complex plane falls on a circle with a
radius of 1/2 centered on the point Im = 0, Re = 0.5 (cf. Fig.

II.l). Thls is an important point in that it furnishes a simple

means of checking all numerical calculations. Another practical

result Is related to the adoption of the convergence criterion for

the series of an or bn functions: when these numbers become small
at a sufficiently high order, the circle being in the osculating

plane of the parabola, the result necessarily is:

im (a n } '_ LRe tanl I 1/2 •

Assuming that convergence has been attained when the terms a or

bn become less than l0 -7 n, for example (this is the value which has

been chosen) amounts to applying this condition solely to the
-14

imaginary parts, the real part here being on the order of l0 .

Functions and
n

Derivatives

and Tn: Recurrence of Legendre Polynomials in

Eqs. (2.3) may be stated more expllcitly in another way by

linking _n to -tn:
d P (cos e)

! n
wn (cos e) =_ A P'n (cos e) _ d cos e ;

or by assuming:

x = cos e , "n (x) = p'. (x) .
(II.6)

The result is:

that

_n (cos e) ,, _e P'n (cos 6) , that is : _ (=oGe) -_e (". (=o. e) . =in e].

, (cos e) •
I1

, (cos el =
n

d ,, (cos e)
n sin e + cos e . (cos e),

(t e n

n sin 2 e + cos 0 . (co: e) ,
d cos 6 n

IS: (x) • x . (x) - (1 -x 2) .' (x)
n n n

(II.T)
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where is _n is given solely as a function of Wn
tive _' in relation to the argument x = cose

n

and its deriva-

In order to calculate Eq. (2.6), P'n(X) must be expressed as

a function of the lower orders. Between three successive orders,

the following recursive equation applies to the Legendre poly-

nomials :

("+;')P.+IC_)-(2_+I)_P (_).r. pn.l(x)-o ,

deriving:

(n+l) P'n+l (x) - (2 n+l) Pn (x) - (2 n+l) x P'n 'x) + n P'n.l (x) = 0 Q

Now, the

tive:

following equation links the polynomial and its deriva-

x P' (x) - P' (x) • n P (x;
n n-1 n

making _t possible to eliminate P
n

ly:

from both equations; consequent-

" P'm÷l (x) - (2 n+l) x PVn (x) ÷ (n+l) PVn-1 (x) = 0

setting aside one order (n substituted for n + i), the recursive"

equation for _n may be written:

Wm (X) m _ ((2 n-l) x _'n-1 (x) - n _n-2 (x)) ,

(II.8)

Q

which makes it possible to compute w (x) on the basis of the values
n

for the two previous orders.

In an analogous manner, a recur_ive equation is found for T
n

which contains _n and functions of the immediately preceding order

_n - I and _n - l"

'a (x)• ('n-1(x)+ _n (x)}x.+ (nx2-n+l) "n-1 (x) .
(II.9)
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Using these equations (2.7) and (2.8), functions Wn and Tn may be
calculated for any given order, once the initial values for the

two first orders have been set (cf. 2.9 A and 2.9 B, which give
these values).

1.2.0r_anizatlon of Calculations

The initially assumed givens are:

-- [words missing in original] extreme values for the scatter-

ing angle e and the step chosen Ae (for example: 0 (2) 180).

-- [words missing] variable of values for the size parameter

_l,_2...between Which the step Aa has a value of [words missing].

-- [words missing] index of refraction m, which may be in-

cremented by Am, as many times as determined at the beginning

[? -- words missing].

-- [words missing] an and b n.

-- [words missing] which must be computed in the first place,

since it is these factors which determine [words missing] series

and set the order to be reached.

The index of refraction m and the size parameter a being given,

the values for functions S and C are computed for the first two

orders using the formulas established (2.2) a priori, and their

d_l-:atives S' and C' are derived from these formulas by means of

Eqs. (2.3). The real and imaginary parts of a and b are cal-
n n

culated by constructing Eqs. (2.4) and (2.5) and are stored by the

computer.

After one order has been set aside, S, C, S' ana C' are cal-
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culated once again, this time using the recurslve equations (2.1A),

(2.1B) and (2.3), and this loop is completed by calculating and

storing the new values an + 1 and bn + l" The cycle is repeated
as many times as necessary so that convergence will be obtained
to the degree of precision set in advance. It was as-

sumed that convergence was adequate when the terms an and bn
generated became less than l0 . As has been shown, it was neces-

sary to impose this condition only on the imaginary part. In

addition it might be noted that it was necessary to apply it only

to Im(an) , since numerically it appears that bn is always less

than an, more precisely, on the order of magnitude of an + l"

When this condition has been met, there is no further return

to the beginning of the loop and the first part of the calcula-

tions is completed. At this _olnt the store contains:

-- the maximum order reache_, that is, N.
-- successive N values for

N

(2. n÷l) Re {an÷_ n}
-- the sum _ which has been gradually ac-

cumulated and will serve for calculation of S(O)a -2 and the efficiency

factor Q.

Calculation of Values for Angles

An initial value is assigned to e (0 ° or 180 °, for example)

and the argument x = cose is computed, as well as the first two

orders for _ and _, using the initial formulas established. The

values for an and bn of the same order again are involved, making

it possible to compute the real and imaginary parts of:

(% • (.) ÷b , (x)) 2n÷i
. (x)) 2 n÷l

and of: {an 'n (x) ÷ bn n _-'_'_'+I) '

The same calculus is performed N times, with the sole dif-

ference that in these loops, _n and _n are generated by means of

the recursive equations (2.6) and (2.7). When the calculations
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have been completed the store will have accumulated:

2n÷1 (se (%)..+se {bn},n) ,se {sj.(e))

and the analogous expressions:

Re (s2 (e)} , im (s2 (e)} .

The intensity functions il(e) and i2(e) for this angle e

are then computed by finding the square of the moduli:

i 1 (e) - (Re {$1 (e)})2 + (im {s 1 (e)}) 2

i2 .... S2 S2

Also computed at this stage.are iT = 1/2(i I + i2), the

polarization p = i I - i2/i I + i2 and the phase functions

i 1

_l(e)/4w = and

Q _2

computed.) Examples of

P2(e)/4_. (Functions P3 and P4 were not

indicatrices calculated _n this way are

shown in the graphs below.

Catenation

The angle 0 is then incremented by AI, and the second p_rt of

the calculations is performed by integration, while the results

from the first part (coefficients an and b n) are brought into

play as needed. When all the scattering angles have been examined,

the calculations for a given particle have been completed and

the results are read out from the stores. Depending on the options,

which are not mutually exclusive, they may be transferred to mag-

netic tape, punch cards, or a list, or they may be given in the

form of graphs.

The program increments the size parameter a by Aa (determined
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in advance), and the entire calculus is performed again from

the beginning (new an and bn coefficients); this is repeated

as many times as necessary to attain the preset maximum value for

When this series of cases has been processed, it is possible

to use another loop overlaying the initial parameters to set a

new value for parameter _, and, other things being equal (AM,

Ae, maximum and minimum values for a and e),.to increment the

index, Depending on the initial data furnished, this classical

structure makes it possible to catenate the computations for as

many cases as desired.

Precision

The truncation criterion for series an and bn used here

(10 -7) is that recommended by Penndorf and Goldberg (1956, 1960),

and also used by DermendJlan, Clasen and Viezee (1961). (In

cases where the index is complex it is converted into an an* +

bn bn* < 10-1_.) The value of the criterion determines the

degree of precision which may be expected for the i(e) function

values and those derived from them. This precision is six

significant figures, no matter what the absolute value of the

number may be. It is not possible to predict the degree of

precision with absolute certainty by numerical analysis, since

the speed of convergence for the uncomputed terms is a priori

not predictable; thus the results must be compared with other

published results, or the calculations must be checked by chang-

ing the value of the criterion (a procedure which has also been

used). In this way the stated degree of precision may be

confirmed.
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Examples of scattering Indlcatrlces computed for a relatlve

index of refraction of 1.075 and for the indicated _ parameter

values. These figures serve as an illustration of the expansions

given in Sections 2.1.2 (Variations in Indlcatrlces), 2.2.3
(Raylelgh-Gans Range) and 2.2.5 (Reflectlon-Refractlon). The

data are normalized to 0" in order to plot the Indlcatrlx.(log
ordinate scale) and the value i(0 °) at this angle is indicated

as well as the efficiency factor Q. The two polarized components

i (e) and i_(_) are represented by dots and crosses, respectively,

a_d the curve corresponds to the total intensity Ip( ) = (1/2)

IT(e) = (1/2)[ll(e) + 12(e)].

Key: a. Normalized to 0".
b. Index.

Series an and bn converge more slowly as a becomes higher.

For all the cases treated (index less than 1.15), an approximate
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empirical equation was found to hold true: N _ 1.07 m + I0,

linking m to the number of orders N necessary to satisfy the
7

criterion _ 10" . An equation of this type has further been

proposed to limit a priori the number of recursions to be per-

formed (Penndorf); it is _mpossible for this equation to be

generally applicable since the value for the index also comes

into play.

It is necessary to calculate the Mie coefficients an and b n

using double p_ecision (17 siginificant figures). Without enter-

ing into detail on this numerical aspect, this is due to the

fact that in recursions for computation of S' and
n

C'n, subtractions must be performed which result in the occur-

rence of numerically (hut not mathematically) indeterminate

functions; when the terms generated differ only beginning with

the eighth significant figure, it is impossible to compute their

differences by single precision (in this case the store for each

number consists of _-_e_6_ decimal places). This results in the

necessity for division by zero, which cannot be performed, and

the program goes into an infinite loop without ever satisfying

the convergence criterion. Double precision computation, which

must be used when a > 20 or 25, removes this difficulty, although

it does increase the computation time by a factor of approximately

four. DermendJian has recently emphasized the necessity for this

precaution (1969).

2. Computation for Polydispersed Systems

2.1. Organization of Computations

There is no special difficulty involved in performing these

computations. They may be organized in several ways; the most

frequently used method may be 0riefly summarized as follows.

The integrals of type (3,2) and (3.3) (Part 2) yielding
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_l(e) and _2(e) are, of course, replaced by weighted summations

of terms corresponding to the 60_prevleusly computed individual

Indicatrices; this amounts to the statement that da is not con-

stant, but rather is small when it corresponds to classes of

particle size which are plentifally represented and increases,

on the other hand, as the size of the particles increases and

their number decreases. The weighting term C(_) is computed

on the basis of the law of distribution used (Junge law, etc.).

It thus becomes necessary to calculate summations such as:

61 •

(1) _ ikj(e.a),c_(a) , (numerator from 3.3)
k-I

_I . Q(a)ckCa) .2

(2)

J = lor 2.

61

a2 . ckCa)
(3) k-1

(denominator from 3.3), with

The summations are performed progressively and simultaneously

for the 91 angles considered, ranging from 0 ° to 180 °, _n steps

of 2° (expression 1 above) and also for the other two expressions

(2 and 3). Discrete a values _orrespond to the 60 values for k.

After the term Ck, of the order k, has first been computed by

means of the law of distribution, the 182 values for ikj(e) , that

for Q and t_at nor m corresponding to the same order k are once

again obtained and multiplied by Ck, then summed with the analogous

values computed for the previous orders, in 184 stores correspond-

ing to the 184 sums to be performed.

Subsequently the operations predicted by (3.2) and (3.3)

(Part 2) are performed, as well as the additional computations:

_(e) = _ and p(o) =
"6 (o)

,ib
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V

Optional outputs make it possible to review partial results

corresponding to low truncation (minimum k _ 1), high trunca-

tion (maximum k < 61), or both at once.

Automatic reinitiation changing the distribution parameters

makes it possible to process all the necessary cases.

2.2. Computations Within the Lower Limit Law am = 0.2

In this case use of the Rayleigh theory is Justified (cf.

2.2.2, Part 2); this theory is shown in Table 1 below, where a

comparison is made of computations of iT by Mie theory and by

Rayleigh theory, for _ = 0.2 and e = 0" (as an example). Under

these conditions the intensi_y functions are written (cf. Eq.

(2.15), Section 2.2.2. and Eq. (2.31), Section 2.2.10):

i1(e)= 6 ^2 , 6 A2 co,2e and Q = (8/3) _ ^2
i2 = .

The integrals may be rigorously calculated from the arbitrary

size 0 up to 0.2, in order to evaluate the maximum error, when

the distribution is expressed by a power law (or an exponential

law). The expressions:

0'2 Icos2 eI and r°'2A2 I 6 I -m a. (813) A2 4 2 -m
J 0" . , . "

0 0
d, I

corresponding to (I) and (2) are computed.

of the factors, the resultant value is:

With the exception

7--'_ a7-m 00,2

which has a finite value if m • 7 (cf. Part 2, Section 3.2.2)?

As Table 1 shows, these quantities are always negligible in

comparison to those computed between 0.2 and 200. (It was as-

sumed for these computations that there was a particle correspond-

ing to a = 1 and that the exponent m of distribution was 3.9.)
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TABLE I

a
Indite

1_02

1,05

1,075 1,5567

iT (o°) (=_-0.2)

R_leigh Mie

0s1130 10"70_1131 10-7

0,6986 " 0,7001 "

" 1,5619 "

Rayleigh Mie

o,T51o-6 I,o lO"61

h,66 " 5,O "

10,31 " 10,O "

2 200i_o)_'md= I i(o)_'md=
0 0,2

m • 3,9
, . . ,.

0,0102 10"h 0,162

O,07hh " 0,369

0,165 " 0,53_

200
_,2 / I
0 0,2

0,006

0,02

0,03

Key: a. Index

TABLE 2

aExposant f .
0 1

-3,6

-3,8

-h,O

-h,5

_Gausso log.

Expon,

93,O

97,4

99,O

99,35

9O C pour

C pour

7,0 %

2,6 %

1,0 %

0,65 %

S,l
0

Key: a. Exponent
b. Gaussian-log
c. For

2.3. Computations Beyond Upper Limit

This problem is presented in Part 2 (Section 3.2.3). Using

the factor p rather than s, and assuming Q to be constant and

equal to 2 if p > i00, integration of_Q(p)_ 2-m from I00 to ®

_s immediately calculable and yields the asymptotic values

sought. One thus obtains the ratios of a few exponential values

to the total value given in Table 2, expressed as a percentage;

this table also shows the values for p corresponding to 90% of

the total scattering with the log-normal and exponential distrl-

outlons considered.
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